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SUMMARY
Instances of sustained stationary sensory input are ubiquitous. However, previous work focused almost
exclusively on transient onset responses. This presents a critical challenge for neural theories of conscious-
ness, which should account for the full temporal extent of experience. To address this question, we use intra-
cranial recordings from ten human patients with epilepsy to view diverse images of multiple durations. We
reveal that, in sensory regions, despite dramatic changes in activation magnitude, the distributed represen-
tation of categories and exemplars remains sustained and stable. In contrast, in frontoparietal regions, we
find transient content representation at stimulus onset. Our results highlight the connection between the
anatomical and temporal correlates of experience. To the extent perception is sustained, it may rely on sen-
sory representations and to the extent perception is discrete, centered on perceptual updating, it may rely on
frontoparietal representations.
INTRODUCTION

In essence, every perception has non-zero duration—we gaze at

a tree for some time, then shift our gaze to look at a fly that just

landed on the table only to take off after a few seconds. All these

experiences have a content (a tree, a fly) that extends not only in

space but also in time. Most discussions of the neural correlates

of consciousness (NCC), defined as the minimal set of mecha-

nisms that are together necessary and sufficient for any one spe-

cific experience,1 addressed the anatomical location in the brain

that gives rise to the experience, while time has received consid-

erably less attention in the NCC literature. Introspectively, it

seems that our experience unfolds continuously, in parallel

with the sequence of events; thus, we would expect that our

experience of gazing at the tree was longer than the quick glance

at the fly. However, this intuition is complicated by the existence

of postdictive effects, when a current stimulus influences the

experience of prior events.2,3 To account for this, some have

argued that we are not continuously conscious, but rather we

are conscious at discrete moments in time.4,5 The anatomical

component of the NCC is also debated. One major point of

contention involves the role of the prefrontal cortex compared

with high-level sensory cortices.6,7 Multiple previous studies

have found prefrontal responses to be associated with stimulus
This is an open access article und
awareness, yetmore recently, it was argued that this is a byprod-

uct of the reporting procedure and not a signal pertaining to

awareness per se.8

To date, searches for the anatomy of the NCC (where) and

the temporal progression (when) of consciousness have pro-

gressed largely in parallel, as most studies have focused on

the transient onset or change-related responses without exam-

ining the ubiquitous periods of stationarity between the

changes.9–11 This is a critical challenge, as theories linking

conscious experience to the brain should be able to account

for experience of sustained events, not only that of stimulus on-

sets or changes. Importantly, the few studies that examined the

full temporal dynamics of responses to longer stimuli found that

activity in high-order visual regions drops dramatically shortly

after the initial onset response, independent of stimulus dura-

tion.12,13 However, these studies focused on activation dy-

namics and did not examine content representation over

time, which is the focus of the current study. Additionally,

they focused exclusively on visual regions without addressing

activation or representation in the frontoparietal cortex. Test-

able predictions regarding these issues were recently put

forward in an adversarial collaboration aiming to adjudicate

between two theories,14 global neuronal workspace theory

(GNWT)15 and integrated information theory (IIT).16
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Figure 1. Experimental setup and design, electrode locations, and single-electrode response dynamics showing substantial attenuation

after the onset response

(A) Experimental setup and example images from the four categories.

(B) Two target types (together 10% of trials): (1) clothing items and (2) blurring of the image.

(C) Electrode locations (pooled across patients), colored by ROI. The same color scheme applies for all figures. See Tables S1C and S1D.

(D) HFA response dynamics relative to the prestimulus baseline (positively responding electrodes). To highlight response dynamics, for each electrode, only trials

from categories it was responsive to were included. Shaded area: SEM across electrodes (number shown in the inset). See also Figures S1A–S1E.

(E) Relative attenuation in HFA responses from peak to 800–900 ms (peak minus end activity relative to peak; attenuation >100% when end activity is lower than

baseline levels). Colored dots: single electrodes (same as in D), colored horizontal lines: mean across electrodes, white dots: median across electrodes, gray

vertical bars: interquartile range, contour lines: kernel probability density estimate. Black horizontal lines and asterisks: significant post hoc differences between

ROIs (Tukey-Kramer method).

(F) Category selectivity dynamics in category-selective electrodes (h2 expressed as percentage of explained variance from a one-way ANOVA between cate-

gories). Notations as in (D). See Figures S1F–S1H for electrode locations and single-electrode properties.

(G) Relative attenuation in selectivity, higher numbers indicate stronger attenuation. Notations as in (E).

(D–G) Image durations R900 ms.
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Here, we address these fundamental questions by examining

the spatiotemporal neural representation of clearly visible im-

ages of different durations (300–1,500 ms) in ten human pa-

tients with drug-resistant epilepsy implanted with subdural

electrodes for clinical purposes (Figure 1A; Tables S1A–S1C).

To maintain attention, responses were required for 10% of

the trials that were not analyzed, excluding any report-related

signals (Figure 1B). Using multiple presentation durations al-

lows us to distinguish between responses to the onset of a

stimulus and signals tracking the ongoing stimulus presence.

Presenting a diverse set of images enables us to identify sig-

nals tracking the content of experience, not only whether an im-

age was shown or not (which was the focus of our previous

work using this dataset12). We use this to examine visual repre-

sentation over time at the level of visual categories (e.g., faces/

objects) and at the level of single exemplars (e.g., specific ob-
2 Cell Reports 42, 112752, July 25, 2023
jects). Within the object category, we analyzed separately a

subcategory of watches, which bear low-level visual similarity

to faces.17,18 To foreshadow our results, we find that despite

considerable variability in moment-to-moment activation levels,

the distributed population representation of visual content

(category and exemplar level) in sensory regions is stable, par-

alleling the stimulus presentation. Further, we find transient vi-

sual representation in the prefrontal cortex, despite the lack of

overt report. These findings confirm predictions of both the-

ories delineated in the recent adversarial collaboration.14

More broadly, these results highlight the importance of ad-

dressing the NCC within a temporal context: to the extent

conscious experience is continuous, it may rely on sensory rep-

resentations, and to the extent experience is discrete, it may

rely on prefrontal representations. Thus, by studying visual

experience and representation beyond the onset, we reveal a
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connection between spatial (anatomical) and temporal under-

standing of consciousness.

RESULTS

We measured broadband high-frequency activity (HFA;

70–150 Hz; STAR Methods), shown to reliably track local

neuronal activity,19,20 in six a priori regions of interest (ROIs)

defined anatomically (Figure 1C; Table S1D). Of 907 noise-free

electrodes, we focus on 430 that were visually responsive,

defined as significant HFA modulation relative to a 200 ms pres-

timulus baseline, for at least one category in at least one of four

non-overlapping 200ms time windows between 100 and 900ms

after stimulus onset (considering only images presented for

900ms or longer; see STARMethods and Table S1E formore de-

tails). Thus, electrode selection did not involve any category or

temporal selectivity. Analyses focus on the four visually respon-

sive regions: occipital (Occ), ventral temporal (VT), parietal (Par),

and prefrontal cortex (PFC); other regions are shown in the sup-

plemental information. With the exception of Figures 1D and 1E,

all analyses in themain text include both positively (increased ac-

tivity, >80% of sites) and negatively responding (decreased ac-

tivity) electrodes. Similar results were obtained using positive

electrodes only (supplemental information). To increase the

number of trials in each category, we pool all images presented

for 900–1,500 ms for all analyses except for Figure 4, where we

consider each stimulus duration separately.

Response magnitude and category selectivity in single
electrodes is substantially attenuated after the initial
onset response
We first examined the single-electrode HFA response dynamics

to images presented for 900 ms or longer (Figure 1D). Response

magnitude was higher in Occ and VT relative to the PFC and Par

(one-way ANOVA, F(3,293) = 12.5, p < 10�6; Figure S1A) and

peaked earlier in Occ relative to all other regions (F(3,293) =

15.73, p < 10�8; Figure S1B; see Figures S1C–S1E for response

dynamics in other regions). Importantly, despite the continued

presentation of the stimulus, response magnitude in all ROIs

was substantially attenuated after the onset response, with

�5-fold reduction in activity by 800–900 ms after onset relative

to peak response (mean attenuation ± SEM of electrodes from

all four ROIs: 81.8% ± 1.1%). Attenuation magnitude slightly var-

ied between regions (one-way ANOVA, F(3,293) = 2.98,

p < 0.033; Figure 1E), with post hoc tests revealing only larger

attenuation in VT compared with Occ (Tukey-Kramer method,

p < 0.03, Cohen’s d = 0.42). VT and Occ showed strong re-

sponses at the onset, and even after the prominent response

attenuation, their responses stayed (on average) higher than

baseline levels (see our prior analysis of this data in Gerber

et al.12 for more detailed discussion of this point).

Of 430 responsive electrodes 236 showed significant category

selectivity in at least one 200 ms time window (one-way ANOVA

between categories; STARMethods; Figure S1F). In line with the

general reduction in the magnitude of responses, by 800–

900 ms, category selectivity (h2 values from temporally resolved

ANOVA) declined by an average (±SEM) of 77.4% ± 1.1% rela-

tive to peak selectivity (Figures 1F–1G, S1G, and S1H; no signif-
icant differences between regions, F(3,214) = 1.09, p > 0.3).

Thus, both response amplitude and category selectivity in

single electrodes were substantially attenuated after the onset

response, despite the continued presence of the stimulus.

Multivariate state-space dynamics in sensory regions
track the duration of the stimulus
To understand how information is encoded in patterns of distrib-

uted activity, we examined the multivariate state-space trajec-

tory in response to each category separately21–23 (Figures 2A

and S2A; all images presented for 900 ms or longer). We quanti-

fied multivariate activation using the point-by-point distance of

the neural trajectory from the baseline state (prestimulus state,

when no stimulus was presented; insets). Similarly to the sin-

gle-electrode activation profiles, the multivariate activation

increased rapidly after the onset, followed by marked attenua-

tion (reduction of �80% from peak response to 800–900 ms in

all regions except Occ; Figure S2B). The decay of activity was

substantially slower than the rise of the onset response, espe-

cially in Occ and VT regions (see Figures S2C–S2D for analysis

of state transition speeds). Separating the responses to stimuli

of different durations (faces: Figures 2B and S3A; watches: Fig-

ure S3B) shows that despite the amplitude attenuation after the

onset, multivariate responses in VT and Occ precisely tracked

stimulus presence, with significant differences comparing 900

with 300 and 1,500 with 900 ms stimuli, emerging shortly after

the offset of the shorter stimulus (permutation test with max-sta-

tistic control for multiple comparisons, p < 0.05). Responses in

the PFC and Par did not show this profile of duration depen-

dence. Similar results were obtained by comparing trajectories

directly (without considering the distance to the prestimulus

state; Figures S3C and S3D).

Visual category representation is sustained and stable
in sensory regions and transient in frontoparietal
regions
Next, we examine the representational content of the multivar-

iate responses using time-resolved single-trial decoding24,25

on a subset of 92 unique images that were shown to all patients

for 900 ms or longer. Similar conclusions were obtained by

examining the dispersion between state-space trajectories (Fig-

ure S3E). We trained linear classifiers for each ROI to distinguish

between each pair of categories, using the HFA responses

across electrodes as features (Figure 3A). Classifier performance

was evaluated using the area under the curve (AUC) of the

receiver operating characteristic curve (ROC). Peak decoding

was significantly higher than chance in both occipitotemporal

and frontoparietal regions (Figure 3B; mean ± SEM across com-

parisons: VT, 99.6% ± 0.3%; Occ, 98.1% ± 1.6%; PFC, 84.1% ±

2.3%; Par, 86% ± 1.7%; one-sided max-statistic permutation

test, VT and Occ all pperm < 0.002, except Occobject-animal

pperm < 0.022, PFC and Par all pperm < 0.039, except object-an-

imal in both regions and PFCwatch-object). Thus, category informa-

tion was not limited to traditional visual areas.

However, the temporal profiles of decoding performance were

dissimilar across regions (Figure 3C focuses on the face-watch

comparison, and all comparisons are shown in Figure S4A;

direct time-resolved contrasts between regions are shown in
Cell Reports 42, 112752, July 25, 2023 3
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Figure 2. Multivariate state-space dynamics in sensory regions track the duration of the stimulus

(A) State-space trajectories per category (image durations R 900 ms; first 3 principal components using all responsive electrodes, responses in each category

averaged prior to principal-component analysis [PCA]; PCA was performed solely for visualization purposes). Trajectory lines are darker and thicker as time

progress, dots are 5 ms apart. Insets: point-by-point distance of each trajectory from the (baseline) prestimulus state (computed using the full response, prior to

PCA); colored vertical lines on the abscissa: peak distance times. See Figures S2 and S3E for extended analysis of state-space trajectories.

(B) Dynamics of distance from baseline (face images, see also Figure S3A; for other categories, see Figure S3B; baseline subtracted for presentation purposes).

Offsets marked by vertical lines with corresponding hues. Horizontal bars: time points of significant differences between durations (max-statistic permutations,

p < 0.05; 1,500 vs. 900 ms, 900 vs. 300 ms; colors correspond to the shorter duration in the contrast). Traces are cropped 600 ms after stimulus offset (shortest

inter-stimulus interval, ISI). Absolute distances are comparable within regions at different time points, not between regions, as magnitude is dependent on the

number of electrodes. See also Figures S3C and S3D.
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Figure S4B). In VT and Occ, significant clusters26 emerged early

after stimulus onset and persisted throughout stimulus presenta-

tion (all pcluster < 0.001, red horizontal bars in Figure 3C;

confirmed also with false discovery rate [FDR]-corrected point-

by-point permutations, black horizontal bars). Despite the sub-

stantial attenuation in response magnitude and in single-elec-

trode selectivity in both regions (Figure 1), category decodability

decreased onlyminimally throughout this time (face-watchmean

AUC 100–900ms: VT, 99.8%; Occ, 92.4%). These results did not

stem from a single patient; high and persistent decoding perfor-

mance was observed in the majority of patients with electrodes

in these regions (Figures S5A and S5B). Similar results were

found for both retinotopic and non-retinotopic regions of Occ

(identified using a probabilistic map of visual topographic

areas27; Figure S5C).

In contrast to the visual areas, significant category decoding in

the PFC and Par was transient and mostly limited to �150–
4 Cell Reports 42, 112752, July 25, 2023
600 ms after stimulus onset (face-watch, both pcluster < 0.001;

see Figures S6A and S6B for single patients). Onset times

were delayed relative to the appearance of category information

in sensory regions, consistent with the idea that content-selec-

tive activity in frontoparietal regions only emerges after activity

in sensory areas reaches a critical level.15 We repeated the anal-

ysis separately for the orbitofrontal cortex (OFC) and lateral pre-

frontal cortex (LPFC), as these parts of the cortex belong to

partially distinct networks considering cytoarchitectonics, con-

nectivity patterns, and function.28,29 Category information was

significantly decodable from both subregions, though it was

more prominent in the OFC relative to the LPFC (Figure S6C).

Given the intense debate about the role of prefrontal representa-

tion in conscious awareness,15,30 we applied several controls

that ruled out the contribution of ocular muscle artifacts to PFC

decoding (STAR Methods; Figures S6D–S6E; as the LPFC is

less susceptible to ocular-muscle artifacts, these analyses focus
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Figure 3. Visual category representation is sustained and stable in sensory regions and transient in frontoparietal regions

(A) Schematic illustration of decoding for a single time point: colored dots represent single-trial responses; a gray bar represents the linear classifier.

(B) Peak decoding. Significance computed by permutation testing. Gray horizontal lines: significance threshold (max-statistic permutation testing; threshold is

higher for comparisons involving categories with less exemplars).

(C) Decoding dynamics (face-watch; other comparisons and direct comparisons between regions: Figure S4). Dashed lines: stimulus onset and chance level. Red

bars: significant clusters by cluster-based permutations, black bars: significant points by point-by-point permutation testing (FDR corrected).

(D) Temporal generalizationmatrices (face-watch; other comparisons are shown for VT andOcc in Figures S5D and S5E). The diagonal (training and testing on the

same time point) corresponds to the time courses in (C). Black contour: contiguous points significant by point-by-point permutation testing (FDR corrected).

Right-side plots: mean generalization dynamics for 200 ms blocks of training time. Red bars: testing points significant for R50% of training points in the range.

(B–D) All stimuli durations R900 ms. See Figures S5 and S6 for single-patient results, analysis of Occ and PFC subregions, and control analyses ruling out the

contribution of ocular muscle activity to PFC decoding.
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on OFC electrodes). Coverage in these regions was less

comprehensive than in sensory regions (Figure 1C), which raises

the possibility that the transient nature of category information in

these regions stems from the reduced coverage. However,

increasing the number of PFC electrodes by not limiting analysis

to responsive electrodes led to similar results (Figure S4A). We

also repeated the analysis in Occ and VT after reducing the num-

ber of electrodes to match coverage in the PFC, which nonethe-

less resulted in sustained category information in these regions

(Figure S4C). Thus, the PFC transiently represents category in-

formation even though no overt report was required for any of

the stimuli used in the analysis.8,31
These findings show that visual areas provide reliable cate-

gory information for as long as the image is presented, not only

at the onset. This sustained decoding could stem from a series

of changing discriminating patterns or a single sustained state.

To address this, we applied the temporal generalization

method,32 in which classifiers are trained on data from each

time point separately, but each classifier is tested on all time

points, resulting in a temporal generalization matrix (TGM;

face-watch: Figure 3D, other comparisons: Figures S5D–S5E).

Successful decoding between time points (off-diagonal decod-

ing) indicates that the direction in state space that discriminates

between the categories remains stable in time. Thus, the
Cell Reports 42, 112752, July 25, 2023 5
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Figure 4. Category information in visual, but not frontoparietal, regions tracks stimulus duration

(A) Decoding dynamics per duration (darker lines correspond to longer stimuli, offsets marked by corresponding vertical lines). Horizontal bars of corresponding

color: significant decoding clusters (cluster permutation test); p values are indicated by bottom-right corner asterisks (corresponding to the cluster temporal

order). Traces are cropped 600 ms after stimulus offset (shortest ISI). See also Figures S7A–7E.

(B) Difference of decoding time courses (1,500–900 ms, dark lines; 900–300 ms, bright lines). Statistical testing and notations as in (A).

(C) TGMs per duration (see Figure S7F for the other regions). Dashed lines: stimulus onset and offset and the diagonal (corresponding to the dynamics in A). Black

contours: significant clusters; corresponding p values shown above each TGM.

(D) Comparison between durations (notation and statistical testing as in C).

(A–D) Occ and VT shown for patients S4–S10 (similar for S1–S3, Figure S7B). PFC is shown for S4–S10 as well (no responsive PFC electrodes for S1–S3). Par

is shown for S1–S3 (not significant for S4–S10). See STAR Methods and Tables S1F and S1G for the rationale behind the split. All panels depict face-watch

decoding (object-watch shown in Figure S7D).
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rectangular temporal generalization pattern we reveal in occipi-

totemporal regions, and especially VT, indicates a highly stable,

time-invariant category representation, as it shows that classi-

fiers trained during the onset response were able to distinguish

between the categories during the sustained response, and

vice versa. This finding was also replicated at the single-patient

level (Figures S5A and S5B). In contrast to this temporal invari-

ance in occipitotemporal areas, category information in the

PFC and Par did not generalize for the entire presentation of

the stimulus (Figure 3D).
6 Cell Reports 42, 112752, July 25, 2023
Category information in visual, but not frontoparietal,
regions tracks stimulus duration
The previous sections focused on responses to stimuli pre-

sented for 900ms or longer. To ensure that the sustained decod-

ing we found in visual sensory regions corresponds to the

ongoing presence of the visual stimulus and does not merely

reflect a prolonged onset response, we repeated the analysis

separately for each duration (300, 900, and 1,500 ms). To allow

a large enough number of images for each duration and cate-

gory, the analysis was performed separately on patients S1–S3
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and S4–S10 (see STAR Methods and Tables S1F–S1G for more

details; Figure S7A shows electrode locations in each group).

Category information in VT closely tracked the presence of the

stimulus (with a short processing delay)—for all durations, signif-

icant AUC clusters emerged shortly after stimulus onset, per-

sisted throughout stimulus presentation, and then subsided

with a delay of approximately 450 ms for the 300 ms stimuli

and 230 ms for the two longer stimuli (face-watch comparison;

Figures 4A and S7B–S7C). Occ showed a similar pattern, with

somewhat shorter offset delays. In both regions, the direct

time-resolved contrasts between decoding images in different

durations (900–300 and 1,500–900 ms) were statistically signifi-

cant following the offset of the shorter stimulus (Figure 4B; all

plargest-cluster < 0.006). In contrast, decoding in the Par and PFC

did not correspond to the duration of the stimulus (time course

differences all pcluster > 0.2). This conclusion is also supported

by decoding of other category comparisons (Figure S7D) and

by decoding using only positively responding electrodes (Fig-

ure S7E). This distinction between representational dynamics

in sensory and frontoparietal regions was also evident by

comparing the TGMs elicited by stimuli of different durations

(VT and PFC, Figures 4C and 4D; Occ and Par, Figure S7F)—

only occipitotemporal areas evinced time-invariant representa-

tions tracking the stimulus duration up to 1,500 ms, and this rep-

resentation was stable in time.

To conclude, despite the drastic change in overall response

amplitude (Figures 1 and 2), visual sensory areas maintain

time-invariant category representations, tracking the duration

of the stimulus. The PFC and Par cortex reveal reliable content

representation but only transiently and independent of stimulus

duration.

Exemplar representation is sustained and stable in
sensory regions and transient in frontoparietal regions
Perception is more than recognizing categories. For example,

when looking at a face, we do not merely see a face, we see a

specific instance of a specific face. We therefore turned to

examine exemplar-level information using representational sim-

ilarity analysis (RSA).33,34 RSA captures the representational

structure by focusing on the pairwise dissimilarities between

neural responses to each pair of images, grouped in a represen-

tational dissimilarity matrix (RDM). We quantify neural dissimilar-

ities as 1-Pearson correlation, but, with few exceptions, which

we note explicitly, similar results were obtained using Euclidean

distance dissimilarity (Figures S8 and S9). We consider a region

as representing exemplar information if the representational

structure, conveyed by the dissimilarities, is reliable across

separate repetitions of the same exact stimuli. Thus, we focus

on 60 images viewed by five of the patients at least twice (for

900 ms or longer, as in previous analyses). Results from a larger

group of eight patients (with only 18 shared images) are shown in

Figures S8 and S9 (see STAR Methods for more details and Fig-

ure S8A for electrode locations in each subgroup).

To examine the reliability across repetitions, we designed

two complementary metrics, both computed on a time point-

by-time point basis. Item reliability (IR) captures the reliability

of each stimulus representation within the overall geometry of

responses by measuring separately the reliability of the
response to each stimulus relative to other stimuli (Figure 5A).

Geometry reliability (GR) captures global aspects of the repre-

sentational structure by comparing the full dissimilarity struc-

ture across repetitions (Figure 5B; averaging different pairs of

geometries or correlating each pair separately before averaging

led to similar results). Note that both IR and GR compare dis-

similarities between and within repetitions. Thus, by design,

they capture not only preservation of the dissimilarity structure

but also of state-space location (see STAR Methods for more

details). Finally, both metrics are tested against surrogate distri-

butions generated by shuffling stimulus identity (Z scoring

shown in Figures 5A and 5B), and thus both metrics also

reflect discriminability of single exemplars by the geometry

(if multiple exemplars occupy similar positions within the

geometry, shuffling them will not alter the geometry, and this

will reduce the IR and GR scores).

Starting with VT, we found highly reliable exemplar represen-

tation sustained throughout stimulus presentation (IR and GR

clusters extending to 900 ms, pcluster < 0.001; Figures 5D and

5E, colored lines; see Figures S8B–S8C for additional regions

not shown in the figure). We further tested for temporal invari-

ance of the representation by comparing dissimilarities between

time points (analogous to decoding temporal generalization) and

found highly stable representation (high off-diagonal stability; IR:

Figure 5F, GR: Figure S9B; see Figure S9A for additional re-

gions). To verify that our reliability metrics reflect coding of single

exemplars rather than relying solely on the category structure

that we observed previously (Figures 3 and 4), we repeated the

calculation of both metrics after removing category structure

from the representational geometry. This was done by partialing

out from the neural RDM four models of potential category

information, designed in accordance with the literature and

the observed state-space trajectories (Figure 5C; see STAR

Methods for more details). The gray lines in Figures 5D and 5E

depict IR and GR dynamics after partialing out the model that

was most strongly correlated with the RDM of the region (Fig-

ure S10A), thereby providing the strictest measure of category

information (using other models led to similar or higher reliability

scores, Figure S10; see also Figure S11 for exemplar reliability

within single categories supporting the same conclusions).

Both IR and GR remained sustained and stable in VT throughout

stimulus presentation after controlling for category information

(Figures 5D and 5E gray lines; Figures S10B–S10E). Using only

positively responding electrodes, Euclidean dissimilarities,

or data from the eight-patient group led to similar results

(Figures S8D–S8F and S9C–S9E).

In Occ, exemplar representation was largely sustained and

stable using correlation dissimilarity (both pcluster < 0.001), but

this result was less robust: representation was not fully sustained

nor stable after removing the categorical structure, nor with

Euclidean dissimilarity or the larger patient group (Figures 5D–

5E, S8D–S8F, and S9C–S9E). Exemplars were also reliably

represented in the frontoparietal cortex, though this effect was

short lived and noisier than in visual sensory regions (IR signifi-

cant in both regions, all pcluster < 0.015; GR significant only in

Par, pcluster < 0.043, albeit not after accounting for category

structure). Thus, we conclude that representation of exemplars

is sustained and stable (time invariant) in visual sensory regions,
Cell Reports 42, 112752, July 25, 2023 7
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Figure 5. Exemplar information is sustained and stable in sensory regions and transient in frontoparietal regions

(A) Schematic illustration of item reliability (IR): for each image (red star), we compare the vector of dissimilarities with all other images in repetition 1 (full shapes)

with the vector of dissimilarities with all other images in repetition 2 (empty shapes).

(B) Geometry reliability (GR): we first compute the dissimilarities between all images in both repetitions, resulting in a symmetric matrix with four distinct

representational structures (top). Pairs of geometries are averaged to yield geometries 1 and 2, and the two geometries are correlated. See STAR Methods for

more details about both reliability metrics.

(C) Models of potential category information in the representational geometry. All models assume that exemplars within each category are similar to each other

and dissimilar to other categories. Three of the models add a hierarchy of similarity between categories (STAR Methods).

(D–E) IR and GR dynamics. Colored lines: full representational geometry (see Figure S8 for control analyses); gray lines: after partialing out the model explaining

the most category information (see Figure S10 for more details about the calculation and removal of other category models; Figure S11 for single-category

results). Horizontal bars of the same color mark significant clusters (cluster permutation test); p values indicated by bottom-left corner asterisks (corresponding to

the cluster temporal order). Dashed lines: stimulus onset and chance level (no single-item information).

(F) IR temporal stability (GR: Figure S9B; removing category information: Figures S10D and S10E; other regions: Figure S9A; other controls: Figures S9C–S9E).

Notations as in Figure 3D.

(D–F) Images presented at least twice with duration R900 ms.
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though it is robust only in VT, and there is transient and weaker

exemplar representation in the PFC and Par.

DISCUSSION

Delineating the neural correlates of conscious experience is one

of the most coveted yet most challenging goals of cognitive
8 Cell Reports 42, 112752, July 25, 2023
neuroscience and perhaps science at large,1 leading to multiple

competing hypotheses.14,35 In different guises, the quest for the

NCC typically involves looking for an isomorphism between a

specific experience and a neural signal by contrasting two

states: having an experience (being consciously aware) of a

stimulus and not having one.31,36 Usually, this requires unnatural

manipulations of the stimuli, for example by masking or by major
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manipulations of attention.37 Under these liminal conditions, ob-

servers sometimes experience stimuli and sometimes not, and

neural signals are then compared. These are powerful para-

digms, especially for examining processing without conscious

awareness, but in many cases, determining whether a stimulus

was genuinely not experienced is difficult, and when experience

is present, it is typically impoverished due to the manipulation.38

As our results show, manipulation of presentation duration of

visible stimuli provides an illuminating alternative, as neural cor-

relates of experience should account for the full temporal extent

of experience, not only the experience of onsets or changes,

which previous studies have focused on. We reveal that despite

diminishing response magnitude (Figures 1 and 2), the pattern of

activation across recording sites in Occ and especially the ven-

trotemporal cortex contains sustained and stable (invariant) in-

formation about the visual percept at both the category (Figure 3)

and exemplar levels (Figure 5), corresponding to the duration of

the stimulus (Figure 4). These properties are commensurate with

the introspective intuition of ongoing, continuous perceptual

experience. In contrast, we found a burst (‘‘ignition’’) of visual in-

formation in the PFC and Par cortex, even though no report was

required. This representation lasted for a few hundred millisec-

onds after onset and did not correspond to the duration of the

stimulus. This suggests that frontoparietal regions may be

involved in updating perceptual experience, including when no

overt response is needed, commensurate with a more discrete

aspect of perceptual experience.4,5

The temporal structure of experience
Introspectively, consciousness feels like a continuous flow of ex-

periences, progressing in ‘‘real time’’ with events in the environ-

ment. However, this prevalent intuition has been challenged on

both empirical and philosophical grounds.3,39 First, neural trans-

mission takes time, and moreover, processing delays vary be-

tween modalities and even between different features in the

same modality. Second, perception often requires integration

of a temporal interval rather than a momentary instance (e.g.,

for perceiving motion or melodies). Perception of intervals is

also suggested by postdictive effects, when a presented stim-

ulus alters the way we perceive prior stimuli.2,40 One well known

example is the ‘‘color phi phenomenon’’2: two differently colored

discs are flashed sequentially in different positions on the

screen, but even though the stimuli do not change their position,

the experience is of one disk moving between the two locations

and changing color midway. Both the direction of movement and

the color are fully unpredictable before the appearance of the

second disk, meaning that the precept during the time interval

between the flashesmust be a retrospective ‘‘filling in.’’ One pro-

posal to resolve this puzzle is postulating discrete percep-

tion4,5—if no perception at all occurred before the second flash,

the full perceptual event can be organized unconsciously and

experienced without any inconsistencies. However, the mecha-

nism behind these types of effects is still studied, and continuous

solutions have also been proposed.3

In the context of our paradigm, the introspective subjective

percept is of stable continuous images with varying durations.

Taken at face value, thiswould suggest that the sustained and sta-

ble visual representations in the ventral visual stream underpin our
ongoing conscious experience. However, to the extent that

perception is composed of discrete samples, each generating a

transient ignition, the frontoparietal response would correspond

more directly to experience. Thus, distinct representational dy-

namics, mapping to distinct hypotheses about the temporal na-

ture of experience, seem to coexist in different regions. Rather

than being mutually exclusive, these representations may be

related to different aspects of a multifaceted experience or may

interact hierarchically to form our ongoing conscious experience

(see Singhal and Srinivasan40 for one such proposal). Altogether,

the results show a deep connection between the classical NCC

problem,which largely emphasized the anatomical underpinnings

of consciousness, and the long-standing debate about the tem-

poral nature of awareness. Finally, our results do not rule out a

continuous role of the PFC in monitoring or supporting this repre-

sentation in amanner that the does not represent the specific con-

tent of visual experience.30

The role of PFC in perceptual awareness
Prefrontal involvement in perceptual awareness was questioned

recently by several studies that reported minimal or no PFC acti-

vation when subjects are not required to report awareness

overtly on a trial-by-trial basis41,42 (so called ‘‘no-report para-

digms’’8). These findings suggested that PFC is not involved in

experience per se, but in reporting it (though see Dellert et al.43

for a recent no-report study in humans that did find PFC aware-

ness effects and see Kapoor et al.44 and Bellet et al.45 for related

findings in monkeys). Unlike the aforementioned no-report para-

digms, the trials we analyzed, while not requiring a response,

were task relevant, as the subjects had to decide whether the

stimulus belonged to a target category. Nevertheless, our find-

ings show human stimulus-specific representations that are

not associated with an overt report and are not mapped to

task distinctions.46 That is, we find in the PFC highly accurate de-

coding between image categories that are non-targets. More-

over, the task only required discrimination of category informa-

tion, yet we also find reliable exemplar representation. Thus,

contrary to recent claims that the PFC manifests only non-spe-

cific task-related activity,47 our results support content repre-

sentation in the PFC following the onset of a new stimulus.

Implications for specific theories of consciousness
An ongoing adversarial collaboration (COGITATE), aiming to

adjudicate between two prominent theories of consciousness,

IIT and GNWT, has adopted our multiduration paradigm as one

of two key tests14,48 and provided detailed predictions by the

two theories regarding this paradigm. IIT predicts that neural ac-

tivity in a ‘‘posterior hot zone,’’ including Occ and VT regions, will

persist with a stable representation as long as the visual experi-

ence persists, while it is largely agnostic about prefrontal involve-

ment. GNWT predicts transient onset and offset representations

without a sustained component in the PFC, including when no

overt behavioral responses are performed. Both predictions

bore out in our study—posterior (visual) areas showed stable

persistent representation, tracking the duration of the stimulus,

and the PFC (as well as the Par cortex) showed an onset (albeit

no offset) ignition without persistent representation, absent

behavioral responses. Thus, these predictions of IIT and
Cell Reports 42, 112752, July 25, 2023 9
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GNWT are, in fact, not adversarial. Rather, the persistent repre-

sentation in the occipitotemporal cortex and transient represen-

tation in the frontoparietal cortex may tap onto different compo-

nents of experience.

Distributed representation and the ‘‘experience
subspace’’
The notion that perceptual representations in humans are distrib-

uted, rather than local, has been suggested mainly based on

fMRI findings49,50 and remains contested.51 The temporal stabil-

ity of distributed representation reported here, in face of sub-

stantial local variability, supports the importance of distributed

patterns. A shift from identifying the NCC with activation in spe-

cific neurons to the multivariate population response is also sup-

ported by a recent binocular rivalry study in monkeys showing

that the same neurons in high-order visual cortex that represent

the perceived stimulus also simultaneously code the suppressed

image.52 Yet, a decoder trained on the population response was

able to closely track the ongoing percept, indicating that even in

the face of local heterogeneity, conscious content can be reliably

coded at the population level.

The VT representations we identified were not only sustained

but also highly stable. That is, the same classifier could discrim-

inate categories from the onset response to the end of the pre-

sentation time, and similarly, the same representational geome-

try persisted throughout this time. Our results thus reveal an

embedded subspace within the vast space of possible neural re-

sponses that maintains consistently the distinctions between vi-

sual categories and between exemplars within each category,

despite considerable moment-by-moment variability in the full

state-space response. The stability within this subspace also af-

fords downstream regions with a stable readout of information

about the visual percept.53 We propose that to the extent repre-

sentations in sensory regions contribute to our conscious

experience, it is the projection of the population response to

this stable ‘‘experience subspace’’ that imbues each perceptual

experience with its unique quality, while the variable activity in

other dimensions may be used for other functions or may simply

be the result of neural stochasticity. This may also explain why

repeating stimuli seem identical despite the ubiquitous phenom-

enon of neuronal repetition suppression54—we suggest that as

long as the response to a stimulus occupies the same location

within the ‘‘experience subspace,’’ it will be similarly perceived

regardless of the initial or sustained amplitude of response.

Finally, it was recently proposed that the subjective quality of

an experience is derived from the relation of its neural represen-

tation to other representations.55,56 The stable coding of the rela-

tional structure between neural responses to different exemplars

that was found here is consistent with this view, under the prem-

ise that the subjective experience remains unchanged during the

short presentation of the stimuli.

A related proposal has been put forward to explain the puz-

zling phenomenon of ‘‘representational drift,’’ that is, the obser-

vation that tuning properties of single neurons vary dramatically

between trials or sessions, separated by seconds to many days,

even in the face of consistent behavioral performance.57,58 This

dissociation between stable behavior alongside variable repre-

sentation resembles our findings of perceptual stability along-
10 Cell Reports 42, 112752, July 25, 2023
side variable neural response, albeit at a different temporal res-

olution. Several authors have suggested that representational

drift is confined to a coding ‘‘null space,’’ that is, it influences

population activity orthogonally to coding of task-related

variables and therefore does not interfere with task perfor-

mance58–61 (but see Rule et al.62,63). Most studies on representa-

tional drift involved single-unit recordings or local ensembles of

neurons in laboratory animals, and our findings extend the notion

to humans and more broadly distributed representations (see

also a recent fMRI finding of representational drift across ses-

sions64). Importantly, studies of representational drift typically

treat representation as stable at the subsecond scale, yet our re-

sults show considerable response variability within a single

event; therefore, more work is needed to connect the two

phenomena.

Conclusion
Which parts of the brain reflect our current perceptual experi-

ence and how their temporal dynamics correspond to the sub-

jective experience are two major questions in the quest for un-

derstanding the neural correlates of conscious awareness. By

manipulating stimulus duration, we were able to identify an

important duality between these two aspects. In sensory re-

gions, we find sustained and stable representation in an ‘‘expe-

rience subspace’’ embedded within the variable, diminishing

neuronal responses. In frontoparietal regions, we found discrete

(transient) content representation at stimulus onset. Thus, if the

introspective subjective experience of a continuous stable

percept given stationary input is accurate, it is suggested that

the invariant sensory representation within the ‘‘experience sub-

space’’ imbues each perceptual experience with its unique,

consistent quality. Yet, to the extent consciousness is discrete,

this could be aligned with the discrete transient prefrontal repre-

sentation. Thus, understanding the temporal resolution of expe-

rience will shed light on the anatomical location of the NCC, and

delineating the NCC will in turn inform our understanding of the

temporality of conscious experience.

Limitations of the study
First, the PFC is a heterogeneous structure, with complex spatial

organization28,29 and mixed selectivity at the single neuron

level.65 Persistent information could be present in sites not

sampled by our electrodes, which were placed solely based on

clinical considerations and in this study were concentrated

mostly on one hemisphere. The lack of sustained representation

could also be related to the relatively small number of electrodes

placed in the PFC, though reducing the number of electrodes in

sensory regions to the same number available in the PFC did not

substantially deteriorate the sustained representation observed

in those regions. Additionally, the PFC may be involved in main-

taining sustained continuous percepts using activity in low-fre-

quency bands or in silent synaptic changes.66 For all these rea-

sons, the absence of (sustained) activity should be taken with

more caution than the presence of activity (as is always the

case with null results). Second, the stimuli analyzed in this study

were all above threshold, clearly visible images. Thus, it is

possible that unseen, subthreshold images are similarly en-

coded over time. Future studies should test this possibility by
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comparing representation of seen and unseen sustained images

and directly manipulate the duration of aware visual experience

independent of the duration of the input, as in binocular rivalry.52

Finally, our use of the term ‘‘representation’’ is meant to denote

neural patterns that correlate with external stimulus descriptors

and should not be understood as implying mechanistic or func-

tional roles,67 nor do we claim that the representation used by

the brain is constrained by our ROIs, which were chosen to

adhere to common divisions of the brain and to address argu-

ments from the different consciousness theories.
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Software and algorithms

MATLAB 2021a Mathworks https://www.mathworks.com/; RRID: SCR_001622
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iEEG_decoding_minitoolbox This study https://doi.org/10.5281/zenodo.8051195

Gals_RSA_toolbox This study https://doi.org/10.5281/zenodo.8049315

Time_resolved_stats This study https://doi.org/10.5281/zenodo.8049317

State_space_plot This study https://doi.org/10.5281/zenodo.8049319

EEGLAB toolbox Delorme and Makeig68 https://sccn.ucsd.edu/eeglab/index.php; RRID: SCR_007292

MVPA-Light toolbox Treder69 https://github.com/treder/MVPA-Light; RRID:SCR_022173

BioImageSuite Joshi et al.70 www.bioimagesuite.org; RRID:SCR_002986

FSL software package Jenkinson et al.71 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; RRID:SCR_002823

FreeSurfer Fischl72 https://surfer.nmr.mgh.harvard.edu/; RRID:SCR_001847

SUMA - AFNI Surface Mapper Argall et al.73 https://afni.nimh.nih.gov/Suma/; RRID: SCR_005927

Colorbrewer Cynthia Brewer and Mark Harrower https://colorbrewer2.org/

Violinplot-Matlab Bechtold74 https://doi.org/10.5281/zenodo.4559847
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Gal Vishne (gal.vishne@

mail.huji.ac.il).

Materials availability
The study did not generate new unique reagents.

Data and code availability
d De-identified human data have been deposited in a publicly available repository on OSF. DOIs are listed in the key resources

table.

d All original code used for analyses and visualizations has been deposited in a public repository on Zenodo. DOIs are listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ten patients undergoing presurgical evaluation for treatment of intractable epilepsy (4 female, age (mean ± SEM): 41 ± 3.7, range:

19–65; for individual demographic details see Table S1A). Recordings were conducted in the Epilepsy Monitoring Unit (EMU). Seven

patients were recorded in the Stanford School of Medicine, two in the California Pacific Medical Center (CPMC) and one in the

University of California, San Francisco (UCSF) Medical Center. All patients gave informed consent approved by the University of Cal-

ifornia, Berkeley Committee on Human Research and corresponding IRBs at the clinical recording sites, in accordance with the

Declaration of Helsinki. Results from the same dataset were previously reported in ref. 12.

METHOD DETAILS

Stimuli and task
Patients viewed grayscale images, presented at the center of a uniform gray background, and extending approximately 5� of the

visual field in each direction. Stimuli were presented on a laptop screen and responses captured on the laptop keyboard (Figure 1A).
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The images belonged to multiple semantic categories, including faces (�30%), man-made objects (watches: �30%, other objects:

�18%) and animals (�10%). �10% of images were targets (see below). The remaining images (<3%) were mostly houses or body-

parts, which were not analyzed due to paucity of exemplars (see Table S1B for the number of stimuli viewed by each patient).

Watches and other man-made objects were considered separately in this study sincewatch images, like the face images, were taken

from a dataset of photos, while the other objects were illustrations. When comparing to face images, watches are considered a better

control over low-level similarities, as the two categories share the overall round outline with internal details.18 To verify that informa-

tion content tracked ongoing stimulus presentation, images were presented for variable durations (patients S1-S3: 300, 600, 900,

1,200 or 1,500 ms; patients S4-S10: 300, 900 or 1,500 ms). The probability of each exemplar appearing in each duration was uni-

formly distributed. A fixation cross was displayed between image presentations (inter-stimulus interval: 600, 750, 900, 1,050 or

1,200 ms). Image sequence was randomized for each patient, meaning that specific exemplars were viewed for different durations

by different patients.

Patients were instructed to fixate at the center of the screen and respond with a button press to the appearance of rare targets

(Figure 1B). In the main experimental condition, performed by all patients, the target was any image of a clothing item. The second

experimental condition was performed by seven patients (S4-S10) in half of the blocks. In this condition patients were instructed to

respond to two target types: (1) appearance of a clothing item (as in the main condition), (2) blurring of any image during the last 200

ms of presentation (see Gerber et al.12 for more details on the motivation of the dual task). Both target types together comprised

�10%of the trials andwere not analyzed in this study, focusing on trials without report. Neural responses to non-targets did not differ

between conditions,12 therefore data from both conditions was analyzed together.

Data acquisition and preprocessing
Patients were implanted with 64–128 subdural electrodes (total 1004), arranged in 1-dimensional strips and\or 2-dimensional grids

(AdTech Medical Instrument Corporation). Electrodes were 2.3 mm in diameter, with 5 or 10 mm spacing between electrodes. Eight

patients were implanted in the right hemisphere, and two in the left (Table S1C for individual electrode coverage). Two patients were

additionally implanted with depth electrodes (total 28 electrodes), which were not analyzed in this study. We excluded an additional

35 channels which did not record any signal. Recordings were sampled at 1000 Hz (CPMC), 3051.76 Hz (Stanford, UCSF) or 1535.88

Hz (Stanford) and resampled to 1000 Hz offline. A high-pass filter was applied online to the signal at either 0.1 Hz (five patients,

increased to 0.3 Hz for parts of the recording in two of the patients), 0.16 Hz (one patient) or 0.5 Hz (four patients). Electrodes man-

ifesting ictal spikes or persistent noise were identified visually and removed from further analysis (0–38 electrodes per patient, total

125; only analyzed electrodes are plotted in visualizations of electrode positions). Electrodes were re-referenced offline to the

average potential of all noise-free electrodes (per patient). Line noise (60 Hz and harmonics) was removed offline by a custom

made notch filter, designed to remove persistent oscillations (not transients).75 All data processing and analysis was done in

MATLAB (Mathworks, Natick, MA) using custom code or the toolboxes referenced in the key resources table. Visualization was

done using custom code except violin plots which were created using ref. 74. Colormaps were created using colorbrewer

(https://colorbrewer2.org/) with some adaptations.

Electrode localization
Electrodes were localized manually using BioImageSuite70 on a post-operative Computed Tomography (CT) scan co-registered to a

pre-operative MR scan using the FSL software package.71 Individual patient brain images were skull-stripped and segmented using

FreeSurfer.72 Localization errors (resulting from co-registration errors or anatomical mismatch between pre- and post-operative im-

ages) were reduced using a custom procedure which jointly minimizes the squared distance between all electrodes within a single

electrode array or strip and the cortical pial surface. Individual patients’ brains and electrode coordinates were co-registered to a

common brain template (FreeSurfer’s fsaverage template) using surface-based registration,76 which preserves the mapping of elec-

trode locations to anatomical landmarks, and each cortical surface was resampled to a standardized mesh using SUMA73 (see

Gerber et al.12 for more details). Cortical electrodes were assigned to one of six anatomical regions of interest (ROIs) based on

the FreeSurfer automatic parcellation (ventral-temporal, occipital, prefrontal, parietal, sensorimotor and lateral-temporal; Figure 1C

and Table S1D). Prefrontal electrodes were further divided into lateral-prefrontal and orbitofrontal cortices, and occipital electrodes

were divided into retinotopic and non-retinotopic based on a probabilistic map of visual topographic regions27 (see electrode loca-

tions in Figure S1D). Twelve noise-free electrodes located over medial regions (mostly in the precuneus or cingulate cortex) were

excluded from further analysis due to their paucity. Visualization of electrode positions was based on surface registration to an

MNI152 standard-space T1-weighted average structural template image.

High-frequency activity estimation
We focus analysis on high-frequency activity (HFA, 70-150 Hz), previously shown to track firing rate in humans19,20,77 and other pri-

mates.78,79We excluded the low-gamma range used in our previous studywith this data, as it was shown tomanifest distinct spectral

and functional properties.80,81 To estimate the HFA time course we band-pass filtered the whole signal in eight 10 Hz sub-ranges

between 70 and 150 Hz (EEGLAB’s FIR Hamming window, function ‘pop_eegfiltnew’68). We then extracted the instantaneous ampli-

tude in each band using the Hilbert transform and normalized by dividing the signal by the mean amplitude in that range. Finally, we

averaged the amplitude traces from all bands. Normalization was done to account for the 1/f profile of the power spectrum, which
16 Cell Reports 42, 112752, July 25, 2023

https://colorbrewer2.org/


Article
ll

OPEN ACCESS
results in reduced contribution of the high frequencies relative to the lower frequencies. Trial segments were defined around each

stimulus onset, and baseline corrected by subtracting the mean HFA signal in the 300 ms prior to stimulus onset from the entire trial

segment. Trials containing excessive noise from�300ms to 1,600ms around each onset were excluded from analysis. The resulting

HFA time courses were smoothed by a 50-ms moving window (smoothed time courses are used in all analyses unless noted

otherwise).

QUANTIFICATION AND STATISTICAL ANALYSIS

In the following sections we describe the four parts of the analysis in detail: Single electrode responses, Multivariate state-space re-

sponses, Decoding of category information, and Exemplar specific information. Following the description of the dependent mea-

sures in each section, we describe the approach to statistical analysis. Note that we use a multiverse approach, testing hypotheses

in multiple ways to ensure the robustness of the results.82

Single electrode responses
Visual responsiveness

Responsiveness was tested separately for each of the four categories (considering watches and other objects separately), in four

non-overlapping ‘‘stimulus-on’’ windows: 100-300 ms, 300-500 ms, 500-700 ms and 700-900 ms after stimulus onset, considering

only trials with durations of 900ms or longer. For each category and each time-window, we compared themeanHFA signal during the

‘‘stimulus-on’’ window to the mean HFA signal 200 ms prior to stimulus onset (two-tailed paired t test; averaging was done prior to

smoothing the HFA trace to avoid information leakage between windows). We used Bonferroni correction across windows, and FDR

correction (Benjamini-Hochberg procedure83) across electrodes, thus, electrodes with qFDR < 0.05/4 in at least one of the four win-

dows were considered responsive to that category. As the test was two-tailed, electrodes were considered responsive both when

activity during the ‘‘stimulus-on’’ window increased relative to the pre-stimulus window, andwhen it decreased. Changes in response

sign between windows or categories were rare (<5% of responsive electrodes), thus, electrodes were classified as positively re-

sponding (increase from baseline; 346/430 electrodes; Figures 1D–1E, and S1A–S1D) or negatively responding (decrease from base-

line; Figure S1E) based on the sign of the sum of t-statistics from all tests (across all categories and all time-windows). Both types of

electrodes were used in all analyses except where noted.

Response latencies and post onset attenuation

We first computed the mean HFA response of each electrode (using only stimuli from categories which the electrode was responsive

to with stimuli duration of 900 ms or longer). Peak response magnitude (Figure S1A) and peak response time (Figure S1B) were

defined as the maximal HFA value between 0 and 900 ms after onset and the time point when this was achieved, respectively. Rela-

tive attenuation of response magnitude was defined as the difference between the peak response and the mean response 800-900

ms after onset, scaled by the peak response (Figure 1E):

response attenuation ð% from peakÞ : 100 ðPresp � ErespÞ�Presp

where Presp is the peak response magnitude and Eresp is the mean response 800-900 ms after onset. Comparison between regions

was performed using one-way ANOVA followed by post-hoc tests using Tukey-Kramer method.

Category selectivity

Electrodes were defined as category selective if they showed differential responses to stimuli of the four categories in at least one of

the four windows used above, for stimuli longer than 900 ms (one-way ANOVA, Bonferroni corrected across time-windows and FDR

corrected across electrodes, similarly to the responsiveness criterion; Figure S1F). For each category selective electrode, we defined

a selectivity time course by extracting the percent of variance in responses explained by category information on a point-by-point

basis (100$h2, where h2 is the effect size measure from a point-by-point one-way ANOVA; Figures 1F–1G, and S1G–S1H).

Multivariate state-space responses

The main multivariate analyses (including decoding and exemplar analyses) were performed grouping together responses frommul-

tiple patients (c.f.84,85). Yet, to ensure no result is driven by a single patient we repeated the central analyses in single patients and

found highly consistent results (Figures S5 and S6).

Analysis of state-space trajectories

The multivariate neural state at a specific time instance s!t = ðst1; st2;.; stEÞ is defined as the pattern of recorded activity across elec-

trodes21–23 (ste is the response of electrode e at time t and E is the number of responsive electrodes in a region). State-space trajec-

tories record the changing multivariate states across time. To quantify the multivariate response magnitude (distance from baseline;

Figures 2, S2, S3A and S3B) we computed the point-by-point Euclidean distance of the trajectory from the neural state prior to stim-

ulus onset. Since all trials were baseline corrected, this is equivalent to computing the L2 norm of the vector of responses across

electrodes. Attenuation was calculated similarly to the univariate case (Figure S2B).
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multivariate response ðdistance from baselineÞ at time t : k s!tk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXE
e = 1

�
ste
�2vuut

State transition speed (Figures S2C and S2D) was quantified as the distance traveled by the neural state-space trajectory in 1 ms

(corresponding to our sampling rate).

state transition speed at time t : k s!t � s!t� 1k
To quantify whether the neural trajectories tracked the duration of the stimulus we computed the time point by time point distance

between the responses to stimuli of different durations (Figures S3C and S3D).

distance between trajectories at time t : k s!1

t � s!2

tk

where s!1 and s!2 are response trajectories to different stimulus durations.

To evaluate category information in the multivariate trajectories (Figure S3E) we calculated the dispersion between response tra-

jectories to different categories: First, we computed the square of the Euclidean distance (L2 norm squared) of each trajectory from

the mean response across all categories. We defined the category selectivity index as the square root of the mean of these distances

(analogous to computation of standard deviation in a one-dimensional distribution), and z-scored relative to a permutation null dis-

tribution as described in the next section.

category selectivity index at time t :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean

C
k s!t

C � mean
C

�
s!t

C

�
k
2

s

where s!t

C is the neural response to category C at time t, and mean
C

is the average over all four categories.

Statistical testing and confidence intervals

To evaluate statistically the dependence of multivariate response trajectories on stimulus duration (Figures 2B and S3A–S3D) we

used permutation testing with max-statistic control for multiple comparisons86 (Nperm = 1,000, separate permutations for 900-300

and 1,500-900 comparisons). Since stimulus duration is expected to influence the response only at the times when one stimulus

is still presented and the other is not, we considered only time points between 300 and 900 ms for the former comparison and be-

tween 900 and 1,500 ms for the latter (results were highly similar considering the entire time course). In each permutation we shuffled

the duration labels across trials, before averaging the trials of each duration to construct the surrogate duration-specific state-space

trajectory and computing the relevant difference statistic for each time point. Thus, we created Nperm permutation statistic time-series

(Nperm x Ntime matrix). Next, we computed the mean and standard deviation across permutations for each time point (column means

and standard deviations) and used these to standardize (Z score) all permutation time-series. To create the surrogate distribution, we

extracted from each standardized permutation time-series themaximal z-value across all time points. We also z-scored the values of

the non-permuted (true label) statistic in the same manner, using the means and standard deviations of the permutation matrix (as

under the null hypothesis the true statistic comes from the same distribution as the permutation statistics). Finally, time points when

the unpermuted z-scored statistic was larger than 95% of the null distribution were considered significant (one-sided test). The pro-

cedure to test for significant category information (Figure S3E) was similar, except that we shuffled the category affiliation across

trials and all time points were considered in the calculation.

Confidence intervals (Figures S2B and S2D) were computed using a jackknifing approach87 (Niterations = 1000, out of
Y10
p = 1

np

possible combinations per category, where np is the number of trials of that category viewed by patient p). In each iteration, for

each patient, the state-space response trajectory to each category was estimated by averaging the response to np - 1 trials (sepa-

rately for each region). We then merged the response trajectories of single patients (each with its own electrodes) to form a single

response trajectory with all electrodes in each cortical ROI. Percent attenuation and speed difference for each iteration were

computed in the same way as for the neural response calculated based on all images, and the distribution across iterations is pro-

vided as the confidence interval.

Decoding category information
Time point by time point classification

To quantify the representation of category information in each cortical region, we trained for each pair of categories a set of linear

classifiers (one per time point) to distinguish between trials when one category was presented (e.g., faces) vs. the other category

(e.g., watches), using the HFA amplitude of all responsive electrodes in the region as features25 (Figure 3A). For all analyses under

this section (Figures 3–4 and S4–S7) the data was downsampled to 200 Hz to reduce computation time. To avoid overfitting, decod-

ing analyses were carried out using five-fold cross validation, and to minimize variability stemming from the stochasticity in fold
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assignment, we repeated the five-fold cross validation procedure five times and averaged the results. In each iteration of the calcu-

lation, the category containing more trials was undersampled to balance the number of trials in both categories and we ensured that

both categories were represented roughly equally in all folds.

We used regularized Linear Discriminant Analysis (LDA),88 as implemented in the MVPA-Light toolbox69 (downloaded on February

4th, 2021). LDA attempts to find a one-dimensional projection of the data (a linear weighting of electrodes) with maximal separation

between the categories. This is done by simultaneously trying to maximize the distance between the mean responses to each cate-

gory (‘‘signal’’), while minimizing the variability in responses to each of the categories (‘‘noise’’). Formally, classifier weights (the pro-

jection vector) are computed according to:

LDA classifier weights : w! = S� 1

�
m!1 � m!2

�
where m!1 and m!2 are the mean responses to category 1 and category 2 (e.g., faces and watches), and S is the pooled covariance

matrix (summing covariances of each category, weighted according to the number of exemplars per category). The predicted cate-

gory for each trial at each time point is given by comparing w!T s!t to a set threshold q:

classifier prediction :

�
w!T s

!t > q/category 1

w!T s
!t < q/category 2

The threshold can be modified to alter the balance of true positives (trials from category 1 classified as category 1) and false pos-

itives (trials from category 2 wrongly classified as category 1), resulting in the receiver operating characteristic curve (ROC), which

depicts the false positive rate (FPR) and the true positive rate (TPR) for each threshold q. We quantified the classifier’s performance

by using the area under the ROC curve (AUC):

area under the curve ðAUCÞ :
Z 1

0

TPR
�
FPR� 1ðxÞ�dx

When the classifier contains no category information the AUC is equal to 0.5 (50%, chance level performance), and when the classes

are fully separable the AUC is equal to 1 (100%, perfect performance). We used AUC, as opposed to accuracy, since AUC is more

robust to unequal class sizes, and is not influenced by changes in the overall magnitude of the response when the pattern across

electrodes remains similar.

To reduce the influence of random noise fluctuations on the weight estimate we used a shrinkage estimator for the covariance ma-

trix. Instead of using empirical covariance in the equation above, we use a combination of the empirical covariance (S) and the identity

matrix (I), weighted according to the regularization parameter l:

shrinkage regularization of the covariance matrix : bS = ð1 � lÞS+ l
traceðSÞ

p
I

where p is the number of features of the classifier. Multiplying the identity matrix by the mean value on the diagonal ensures that the

trace of the covariance is preserved, which helps to mitigate the bias introduced by this step. The regularization parameter l was

estimated using the Ledoit-Wolf formula89 (default implementation in MVPA-Light,69 for more explanation on the rationale of

shrinkage regularization see Blankertz et al.90).

The main decoding analyses were carried out on responses to 92 unique images which were seen by all patients for R900 ms

(faces, 30; watches, 32; other objects, 18; animals, 12; Figures 3B–3D, S4, S5C–S5E, and S6C). To avoid overfitting,25 repetitions

of the same image were averaged to ensure it is not used simultaneously in the training and testing sets (number of repetitions

mean ± std across patients and unique exemplars: 1.5 ± 0.6, range 1–4, similar for all categories). Using only the first repetition of

each image instead of averaging the repetitions elicited highly similar results. Analyses performed on data from single patients

used all unique exemplars viewed by each patient for R900 ms (mean ± SEM unique exemplars across patients: faces, 62.5 ±

4.2; watches, 65.5 ± 4.5; objects (non-watch), 39 ± 2.3; animals, 22 ± 1.1; Figures S5A, S5B, S6A, S6B and S6E). Comparison of

bipolar and average montages was performed on patients S8 and S10 together (faces, 54; watches, 58; other objects, 34; animals,

20; Figure S6D). To run analyses for each stimulus duration separately (Figures 4 and S7) we split the patients into two groups (pa-

tients S1-S3, patients S4-S10), in order to increase the number of exemplars seen in the same duration by all patients in the group

(due to the randomization of the image sequence the full group shared on average only 4.8 exemplars per category and duration). The

number of exemplars in each category and duration shared by the full patient group and each subgroup are shown in Table S1F.

Control for potential ocular muscle artifacts

Previous studies have shown that HFA activity in the proximity of the orbit may be confounded with saccade related activity from

extraocular muscles (spike potentials).91,92 While these studies explicitly showed no contamination of responses in OFC (as opposed

to the temporal pole),91 and patients were instructed to fixate during our task, we nevertheless performed two control analyses to

ensure that the ability to decode category information from OFC was not driven by eye-muscle activity.

Decoding using bipolar referencemontages (Figure S6D): We re-referenced the data after extraction of HFA traces by subtract-

ing from each electrode the mean HFA activity in all adjacent electrodes on the same grid. Both responsive and non-responsive
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electrodes were included for re-referencing but only contacts centered on responsive electrodes were used for classification. Two

patients had enough electrodes placed over OFC (inset above Figure S6D): S8: 16 OFC electrodes, 5 excluded (4 placed on arrays

which weremostly over the temporal pole; 1 containing epileptic activity), resulting in 11 electrodes (5 responsive); S10: 10 OFC elec-

trodes (6 responsive) + 2 LPFC electrodes on the same grid (used for re-referencing).

Decoding in time-windows without any saccades (Figure S6E): Eye-tracking was not possible in the EMU setting, yet we were

able to reliably identify the timing of saccades in one patient (S8), by detecting the saccadic spike potentials in an electrode placed

over the temporal pole, behind the right eye (same electrode used in12). Following ref. 75, we first convolved a template for the

saccadic spike potential with the signal from the relevant electrode (for the template we used the validated publicly available

‘‘matched filter’’75). Second, we marked all points higher than 3 standard deviations of the entire convolution time course. Finally,

we denoted the onset of eachmarked time-range as a saccade. This produced the expected saccademodulation curve around stim-

ulus onset (suppression followed by rebound; similar to Figure 8 in Gerber et al.12), supporting the assertion that the detected time

points correspond to saccadic events. It was not possible to exclude all trials where a spike potential was detected between 0 and

900 ms, as this would exclude 90% of the relevant trials and leave just 1–2 unique images in the animal and (non-watch) object cat-

egories. To overcome this problem, we focused on four non-overlapping time-windows between 100 ms and 900 ms after stimulus

onset and analyzed eachwindow separately while excluding only trials where a saccade occurredwithin that time-window. Using this

approach, wewere able to use 67–82%of the images across time-windows (72–78%of images from each category). Decoding anal-

ysis was carried out on the mean activity in each time-window (unsmoothed data), resulting in one AUC value for each time-window

and category comparison. We used only responsive OFC electrodes which were not adjacent to temporal pole electrodes.

Temporal generalization analysis

To assess whether coding of category information was stable in time we used the temporal generalization method32 (Figures 3D, 4C,

4D, S5 and S7F). In this method linear classifiers are trained on data from each time point separately, but tested on data from all time

points, not only the one used for training. The result is a matrix of decoding values (Temporal Generalization Matrix, TGM), with the

y axis indicating the training time point and the x axis indicating the testing time point. Successful decoding between time points in-

dicates that the direction in state-space which discriminates between the categories remains stable in time (the specific cutoff

between categories may change as we used AUC to evaluate classifier success, which does not rely on one fixed threshold).

Statistical testing

All statistical testing was based on permutation tests (Nperm = 1000; one-sided). To construct the null permutation distribution, in each

permutation we permuted the category labels across trials and trained classifiers for all time points based on the permuted labels (we

used the same set of permuted labels to preserve the temporal structure of the data). Peak decoding performance (Figure 3B) was

statistically tested by comparing to the distribution of peak AUCs of each permutation (maximum across time points), equivalent to a

max-statistic approach to control for multiple comparisons.86 Controlling for multiple comparisons for decoding time courses and

TGMs was done using cluster-based permutations26 (details below; Figures 3C and 4, S4A, S4B, S5A–S5C, S6A–S6D and S7B,

S7D–S7F). Cluster-based permutations are sensitive, yet they are insufficient to establish the precise latency or temporal extent

of effects,93 therefore, we additionally employed point-by-point comparisons controlling the FDR83 whenever inferences about spe-

cific time points were required (qFDR < 0.05; Figures 3C, 3D, S5 and S7C).

Cluster-permutation details: We selected all time points with AUC greater or equal to 60% (first-level threshold; other thresholds

led to similar results), clustered the samples based on temporal adjacency (including both train and test times for TGMs) and ex-

tracted the sum of AUC values in each cluster (cluster statistic). To construct the null distribution, we performed the same procedure

on each of the permutations, but only the maximal cluster value was retained in the null distribution. Clusters from the original (non-

permuted) calculation that exceeded 95% of this distribution were considered significant (one-sided test).

Statistical comparison of decoding between regions (Figure S4B) and comparison of decoding of stimuli in different durations (Fig-

ure 4 and S7) was performed in a similar way, except the cluster first-level threshold was set to AUC difference of 10% between re-

gions or duration conditions. For comparison between regions we used a two-sided test. In both cases we permuted the category

labels and trained classifiers for each region (or duration) separately and formed the null distribution by subtracting the decoding re-

sults for different regions, or, in the duration case by subtracting the short duration (300 or 900 ms) from the long duration (900 or

1,500 ms) and extracting the max cluster statistic as described above. When we compared the decoding time courses between du-

rations we considered only time points after the offset of the short stimulus, as we predicted a difference only when one stimulus was

presented, and the other was not (results were nearly identical without this constraint). For TGMs we considered the full matrix as we

were also interested in generalization between the onset and the time period after the offset of the short stimulus.

Exemplar specific information
Quantifying exemplar representation

To quantify exemplar-level information we used representational similarity analysis (RSA),33,34 which describes neural representation

in terms of the relation between neural responses, that is, the geometry that the responses define. The representational geometry is

fully captured by the set of all pairwise dissimilarities between the pattern of responses across electrodes to each pair of stimuli,

grouped together in a representational dissimilarity matrix (RDM). We employed two dissimilarity measures – correlation dissimilarity

(Figures 5, S8B–S8D, S8F, S9A–S9C, S9E, and S10–S11) and Euclidean dissimilarity (Figures S8E, S9D), as these are sensitive to

different aspects of the response94:
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B are the vector of HFA responses to stimulus A and B across electrodes (in a specific time point), rð u!; v!Þ is the

pearson correlation of u! and v! and k $k is L2 norm.

To avoid overfitting to incidental noise fluctuations, exemplar-level analyses were only conducted on stimuli which were viewed at

least twice (akin to a cross-validation procedure), for 900 ms or longer. Four patients viewed only 27 exemplars twice from the

analyzed categories, and one patient did not view any exemplar twice, thus, to ensure sufficient sampling of all categories we per-

formed the main analyses in this section on a group of five patients who all viewed the same set of 60 unique images at least twice

(faces, 18; watches, 19; other objects, 13; animals, 10; Figures 5, S8B–S8E, S9A–S9D, and S10–S11). Results from a larger eight

patient group (excluding the patient who did not view any exemplars twice and one patient which had excessive noise in many trials)

with only 18 unique exemplars (faces, 6; watches, 7; other objects, 2; animals, 3) are presented as a control in Figures S8F and S9E.

Electrode locations of both groups are shown in Figure S8A.

We computed the dissimilarity structure separately for each repetition and time point and compared between repetitions (reliability

analysis) and between time points (stability analysis) using Spearman correlation, which is more robust to changes in the overall

magnitude of activity relative to Pearson correlation. As with the decoding analysis, for all analyses under this section (Figures 5

and S8–S11) the data was downsampled to 200 Hz to reduce computation time.

Representation reliability across repetitions
Item Reliability (IR; Figures 5D, 5F, S8B–S8F, S9A, S9C–S9E, S10B, S10D, and S11): If exemplars are represented reliably across

repetitions, the location of each exemplar within the neural geometry should remain consistent across repetitions. Thus, for each

stimulus presentation (Figure 5A, red star), we computed the correlation of the vector of dissimilarities to all other images in repetition

1 (filled shapes) and the vector of dissimilarities to all other images of repetition 2 (empty shapes). We then averaged the obtained

correlations across all images and repetitions, and z-scored the result using a permutation null distribution (Nperm = 1000). To

construct the null distribution, for each image presentation we shuffled the stimulus identity of all images from the other repetition

and repeated the process (i.e., if the presented image was from repetition 1 (as in Figure 5A) we shuffled repetition 2 and if the pre-

sented image was from repetition 2, we shuffled repetition 1).

Geometry Reliability (GR; Figures 5E, S8B–S8F, S9, S10C, S10E): Our second measure of reliability captures global aspects of

the representation by comparing the full dissimilarity structure across repetitions. We first computed the RDM between all stimulus

presentations from both repetitions (Figure 5B, top), containing four distinct sets of dissimilarities: within repetition 1 (blue), within

repetition 2 (green) and two between repetition 1 and repetition 2 (yellow and red). Second, we paired each within repetition dissim-

ilarity set with one between repetitions dissimilarity set and averaged the dissimilarities in each pair (resulting in Geometry 1 and Ge-

ometry 2 in Figure 5B bottom; averaging different pairs of geometries or correlating each pair separately and then averaging led to

similar results). Considering both within repetition and between repetition dissimilarities ensures not only preservation of the geom-

etry across repetitions, but also a similar state-space location between repetitions. Third, we computed the correlation between Ge-

ometry 1 and Geometry 2 (unfolded into vectors). Finally, we z-scored the result using a permutation null distribution (Nperm = 1000),

constructed by shuffling the identity of all single exemplars in repetition 2 and repeating the procedure. Importantly, in cases where

some exemplars are represented similarly within the geometry (indistinguishable representations) this approach is likely to result in

insignificant GR even if the geometry is fully maintained between repetitions. Thus, it is a test of both representational reliability be-

tween repetitions and of discriminability between exemplars.

Representation stability in time

We tested the temporal stability of the representation by comparing representational structures across time points (Figures 5F, S9,

S10D, S10E, and S11C). This was done similarly to the reliability analyses, only representational structures were computed in

different time points. IR stability for time points (t1, t2): for each stimulus presentation S, we first computed the dissimilarities between

S at time t1 and all other exemplars in the same repetition as S also at t1 (y axis of stability plots), and then correlated this dissimilarity

vector to the dissimilarities between S at time t2 and all other exemplars in the other repetition at t2 (x axis of stability plots). We then

averaged the correlation across stimuli as in the standard IR calculation. GR stability for time points (t1, t2): we correlated Geometry 1

in t1 (y axis) with Geometry 2 in t2 (x axis). When t1 = t2 (diagonal of stability matrices) this is equivalent to calculation of IR and GR,

respectively. Note that by correlating dissimilarity structures at different repetitions (for at least one of the exemplars), we avoid over-

fitting to spontaneous fluctuations unrelated to stimulus processing, which are known to exhibit many temporal dependencies.95–97

Accounting for category structure

To test whether exemplar-level information is present beyond category differences we designed four models of category information

(Figure 5C) and tested whether exemplar-level information is reliable and stable after removing category information from the neural

RDM using partial correlation (i.e., partialling out themodel RDMs; Figures 5D, 5E, and S10). For IR we used a single row of themodel

RDM for each stimulus (treating the RDM as a symmetric matrix, but excluding the diagonal), and for GR we partialled out the full
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model RDM unfolded into a vector. All models assume exemplars within a category are similar to each other, and dissimilar to ex-

emplars in other categories. In models 2–4 we add a hierarchy of similarities between categories (supported by previous

studies50,98,99), such that categories belonging to the same higher order category are 50% similar. The models are (Figure 5C): (1)

‘‘Single-category’’ – no relation between categories, only a primary category distinction. (2) ‘‘Low-level’’ relation between categories

based on low-level visual similarity – faces and watches form one high-order category (both are photos of round objects), and other

(non-watch) objects and animals form the second (pointy illustrations). (3) ‘‘Semantic’’ (based on animacy) – faces and animals form

one high-order category (animate) and all objects (watches and non-watches) form the second (inanimate). (4) ‘‘Face-vs-rest’’ – faces

are distinct from all other categories, which are all grouped into one high-order category; we constructed this model due to the unique

social importance of faces and the known specialization in face representation (also supported by our results, Figure 2A).

Statistical testing

All statistical testing was permutation-based (Nperm = 1000). Construction of the null distribution is detailed above (section ‘‘Repre-

sentation reliability across repetitions’’, different procedures for IR and GR). In each permutation, we used the same set of permuted

labels for all time points to preserve temporal properties of the data. Z-scoring was performed in each time point separately, for both

the original (non-permuted) score and the permutation results. Statistical testing and control for multiple comparisons was done simi-

larly to the decoding analyses (all one-sided): Time courses were tested using cluster-based permutations26 (sum of reliability indices

as the cluster-statistic). First-level threshold was set to z = 1.5 SD for the main analyses (Figures 5D-5E, S8 and S10B–S10C) and z =

0.75 SD for the single category analyses (adjusted to accommodate the larger temporal smoothing window in these analyses (100ms

vs. 50 ms in all other analyses); Figures S11B–S11D), in both cases similar results were obtained with other thresholds. The time

courses of correlation between each category RDM model and the neural RDM (Figure S10A) were also corrected using cluster-

based permutations, with the sum of the correlations as the cluster-statistic and r = 0.0391 as the first-level threshold (corresponding

to a p value of 0.05). Stability (generalization) matrices were tested using point-by-point comparisons, controlling FDR83 (qFDR < 0.05;

Figures 5F, S9, S10D and S10E).
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