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Universal rhythmic architecture uncovers distinct modes of neural dynamics

Novel segmentation of neural oscillations reveals that the brain switches between transient and sustained
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Abstract

Understanding the organizing principles of brain activity can advance neurotechnology and medical
diagnosis. Traditionally, brain activity has been viewed as consisting electrical field potentials oscillating
at different frequency bands. However, emerging evidence suggests these oscillations can manifest as
transient bursts rather than sustained rhythms. Here, we examine the hypothesis that rhythmicity
(sustained vs. bursty) adds an additional dimension to brain organization. We segment neurophysiological
spectra from 859 participants encompassing a dozen datasets across multiple species, recording
techniques, ages 18-88, sexes, brain regions, and cognitive states in health and disease using a novel
rhythmicity measure. Combined with simulations and brain stimulation, our results reveal a universal
spectral architecture with two categories: high-rhythmicity bands exhibiting sustained oscillations and
novel low-rhythmicity bands dominated by brief bursts. This universal architecture reflects stable modes
of brain operation: sustained bands suitable for maintaining ongoing activity, and transient bands which
can signal responses to change. Rhythmicity thus provides a powerful, replicable, and accessible feature-
set for neurotechnology and diagnosis.
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Introduction

Understanding the organizing principles of the brain’s electrical activity using non-invasive techniques is
a major goal of neuroscience, with implications for brain-computer interface (BCI) design, pathology
diagnosis, and treatment. A dominant hallmark of the electrophysiological signal is its tendency to
oscillate. Brain oscillations are thought to signify synchronized fluctuations in excitability, present in
neuronal systems from rodents to humans, and can be detected invasively or non-invasively 1. According
to a widely held viewpoint, the entire electrophysiological spectrum is composed of oscillatory bands,
covering all frequencies from 0.1 to more than 100 Hz ® [the “canonical bands* delta (0.1-4 Hz), theta (4-
8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-80 Hz), and high-frequency oscillations (80-250
Hz)]. A century of research and thousands of studies suggest that these seamlessly progressing bands form
the spectral architecture of the brain, with oscillatory activity in different bands supporting distinct
cognitive and physiological states “°. This spectral architecture is now considered as one of the
fundamental principles of neuronal activity ®. However, several practical, functional, and physiological
considerations challenge this viewpoint, calling for a revision of this architecture.

On the practical level, band definitions vary widely between research-groups ’, which limits our ability to
compare findings between studies and species. In addition, bands are currently defined and identified by
sustained oscillatory activity and, as such, are assumed to progress seamlessly at the group level. However,
at the single-subject level, which is vital for individualized neurotechnology, diagnosis, and treatment,
these relatively wide bands consist of a combination of aperiodic activity and some narrow band
oscillations 8. With no objective framework for relating non oscillatory activity to canonical frequency
bands, the role of activity expressed in the gaps between narrow band spectral peaks, if any, remains
unknown. On the functional level, at least two of the canonical bands (beta and gamma) are thought to
encompass within their range sub-bands with distinct — and even opposing — roles *!, indicating the
need for a more nuanced characterization of bands. On the physiological level, increasing evidence

indicates that some oscillatory responses are not sustained. Rather, they arise as strong, short-lived bursts
12-14

The bursts raise the possibility that the electrophysiological spectrum segregates into specialised
frequency bands according to their persistence, i.e., sustained rhythms versus bursty spectral phenomena
in different frequency bands. We therefore hypothesized that neural activity is organized within a
rhythmicity-resolved spectral architecture. This architecture is defined not only by frequency but also by
a rhythmicity axis that distinguishes between sustained (high-rhythmicity) and bursty (low-rhythmicity)
modes of activity. This spectral segregation carries functional significance: it allocates specialized
frequency bands to support two distinct processes—the maintenance of ongoing activity, which we
hypothesize to be reflected by sustained oscillations in high-rhythmicity bands >*°, and transient responses
to inputs, manifested as oscillatory bursts in low-rhythmicity bands %7,

This rhythmicity-resolved spectral architecture hypothesis yields four testable predictions: (i) There
should be defined frequency “sustained bands” that clearly express sustained oscillations. (ii)
Additionally, there should be a separate category of bands specializing in transient activity. In these
“transient bands”, spectral phenomena should manifest as short-lived bursts. (iii) The architecture is a
universal organizing principle of the brain’s operating system; hence it should arise across datasets,
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recording techniques, brain areas, and species. (iv) if the architecture mediates cognition, its distinct modes
of operation should differentially respond to varying cognitive states and input processing.

To test this hypothesis and examine its predictions, we develop an objective standard to divide an
individual’s electrophysiological spectrum into high-rhythmic and low-rhythmic bands. We then show
that the resulting rhythmicity-resolved spectral architecture is universal and bears functional significance:
rhythmic bands signify maintenance of ongoing activity, whereas non-rhythmic bands signify transient
events.

Results

Rhythmicity-resolved spectral architecture

To test the predictions of the rhythmic architecture hypothesis, we developed a phase-based tool to
measure rhythmicity over the frequency spectrum (Fig. 1, fig. S1, and online methods). Three features
characterize brain oscillations: frequency (cycles per time-unit), power (or magnitude), and phase (or
angle). The canonical bands are typically identified by measuring spectral power at different frequencies
(fig. S2A-C). However, estimated power is influenced by both oscillatory activity and non-oscillatory
transients. For example, a spectral power peak could result from strong impulses which are not rhythmic.
An alternative approach to power is to estimate how sustained the oscillation is by measuring how well,
at any moment, the signal’s phase predicts its future phase. This is achieved by computing the coherence,
or phase similarity, between the signal and a time-lagged copy of itself (Fig. 1LA). Previous authors defined
rhythmicity as “the consistency of the phase relations between timepoints that are separated by some
interval (lag) 8. Then, they measured the rhythmicity spectrum as a function of lag duration, assuming
that genuine oscillations should remain sustained for many cycles 32° (Fig. 1B). Here we adopt this
definition of rhythmicity, and note that the term is not meant to imply the existence of an underlying
rhythm-generating circuit, but rather denotes the degree of phase consistency. Based on large datasets and
comprehensive simulations, we found that the choice of lag does not influence the relative rhythmicity
values obtained across the different frequencies for each individual subject (Fig. 1C). Hence the
rhythmicity spectrum can be derived from a single lag.

We term the algorithm used to resolve rhythmicity across different frequencies at a specific lag the lagged-
angle vector index (LAVI). LAVI is defined as the vector mean, computed across all time points, of the
phase difference between the signal and a lagged copy of itself. As a measure of phase-consistency, it is
influenced by the rate of phase-shift occurrence (fig. S1). Importantly, LAV values show a clear baseline:
the median across frequencies is stable across participants, channels, and datasets, and depends only on
experimenter-controlled parameters such as lag duration (Fig. 1D) and the window size used for spectral
estimation (Fig. 1E). To test whether the LAVI spectrum reflects background noise, we generated
surrogate datasets. These were constructed by randomizing phases while matching each dataset’s 1/f
power profile—the inverse relationship between power and frequency characteristic of neurophysiological
signals (see Methods; Fig. 1F-H). Recorded and surrogate data had similar median rhythmicity values,
but the surrogates showed a narrower, flatter range. Leveraging this property, we define the median across
frequencies as baseline rhythmicity and the surrogate range as the ‘noise ribbon’ (see Methods and
Supplementary Text; fig. S6).
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Figure 1. LAVI is a measure of rhythmicity.

A. To compute the Lagged Coherence (LC) at each frequency, the phase at each timepoint is subtracted from the phase of a lagged copy of
the signal (arrows, color-coded by time). LC is the vector mean of phase differences across all timepoints (right, circular histograms).
Rhythmic signals yield consistent phase differences and thus high LC values; non-rhythmic signals yield lower LC values. B. LC (colour) as
a function of lag (abscissa) and frequency (ordinate) of one participant. Vertical lines correspond to specific lags plotted in C. C. LC dynamics
across lags. Peaks at specific frequencies are found in different lags, with ceiling/floor effects for very short or long lags. To avoid confusion
between LC (computed over different lags) and rhythmicity in different frequencies at a specific lag, we term this value Lagged Angle Vector
Index (LAVI). D. The LAVI median is consistent across participants. Shown are the medians (across frequencies) of each of the N = 37
participants from Dataset | (dots; shades of grey as in C), plotted as a function of lag. For all lags, a wavelet width of 5 cycles was used. Note
the relatively low variability across participants at each lag. E. As in D, but with varying wavelet widths. Lag was fixed at 1.5 cycles for all
participants. Arrows in C and D indicate the parameter values used throughout the manuscript (1.5 cycles lag and 5 cycles wavelet,
correspondingly). F. Power spectral density of one subject (black) and the aperiodic component estimated using a power-law fit (pink). This
fit was used to generate surrogate data with a similar power spectrum but randomized phase structure. G. Raw traces from the original (black)
and surrogate (pink) data. Vertical scale bar: 10 uV; horizontal scale bar: 0.1 s. H. LAVI of real (black) and surrogate (pink) data. Rhythmic
peaks and troughs are evident in the real data but absent in the surrogate. Dashed line: median of data. Pink shade: noise ribbon, defined as
the range of the surrogate.

The use of a single lag in LAVI not only accelerates computation by an order of magnitude compared to
previous lagged-coherence methods, but also establishes a universal baseline of rhythmicity. This baseline
enables the identification of frequency bands exhibiting both increased and decreased rhythmicity, within
and across individuals. LAVI is therefore uniquely suited to test our rhythmic-architecture hypothesis by
identifying frequency ranges that lie between two crossings of the baseline and above the noise ribbon as
high-rhythmicity bands. Conversely, frequencies between two baseline crossings that fall below the noise
ribbon are classified as low-rhythmicity bands (Fig. 2A). Integrating LAVI with simulations of surrogate
distributions (Fig. 1F-H), we developed an automated band-border detection algorithm (ABBA). ABBA
delineates the boundaries of significantly high- and low-rhythmicity bands at the individual subject level
and automatically assigns band labels. Specifically, we consistently observed a dominant peak within the
6-14 Hz range, consistent with the traditional ‘alpha’ band, and therefore we label this peak is ‘alpha’ (a);
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the subsequent trough is labelled ‘betal’ (B1), followed by the next peak as ‘beta2’ (32), and the following
trough as ‘gammal’ (yl). Similarly, the trough preceding alpha is labelled as ‘theta/alpha’ (6/a), the
adjacent lower-frequency peak as theta (0), the next lower trough as ‘delta/theta’ (6/0) and the lowest peak
considered in this manuscript is labelled delta () (see Fig. 2A).

At the population level, peak frequencies of high-rhythmicity bands defined by ABBA aligned with
canonical, power-based frequency bands (Fig. 2B—C) 3. Yet individual subjects showed considerable
variability within these ranges, with some frequencies classified as high- or low-rhythmicity depending
on the subject (Fig. 2D-E and fig. S2G). This variability underscores the need for an objective, single-
subject band-detection framework. Our approach thus enables comparison with canonical band names
while capturing the individualized spectral structure that underlies them.

A Figure 2. ABBA detects individual and group-level brainwave bands.
A. Rhythmicity profile of a representative participant, with output of the Automated Band
Border Algorithm (ABBA). Black line: subject’s rhythmicity; dashed line: median; pink
traces: 20 instances of simulated 1/f noise. Yellow circles mark peaks and troughs. Green
and blue areas indicate frequencies with significantly increased or decreased rhythmicity,
respectively.

B. Group-level rhythmicity profiles (N = 37) for eyes open (black, dataset I) and closed
(grey, dataset Il). Shading: SEM; yellow highlights significant clusters (p < 0.01, cluster-
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This alignment also enabled us to explore the functional relevance of the spectral architecture and to test
our prediction that rhythmicity patterns are modulated by cognitive states. To this end, we examined
weather changes commonly observed in oscillatory power across brain states are also reflected in
rhythmicity. Specifically, we compared the rhythmicity profiles of the same participants while they were
engaged in a visual task and during rest with eyes closed (Fig. 2D-E). Alpha-band power is known to
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increase during wakeful rest with eyes closed ?*. Consistent with this, we found that rhythmicity in the
alpha-band (8.4-13.3 Hz) differed significantly between these cognitive states (p<0.01, cluster-
permutation test, Fig. 2D). Moreover, the change in rhythmicity (measured via LAVI) was strongly
correlated with the change in alpha power (measured in dB, p=0.781, p<107). A significant increase in
rhythmicity during eyes-closed was also observed in the beta2 band (18.8-22.4 Hz), but not in betal (14.7-
17.8 Hz), suggesting distinct functional roles for these sub-bands. Notably, the frequency ranges of bands
identified by ABBA, as reflecting high or low rhythmicity, remained stable across both states (t29s = 1.4,
p = 0.16, BF10=0.17), underscoring the robustness of the spectral architecture.

Low- and high-rhythmicity bands show distinct burst dynamics

Our findings point to a stable spectral architecture defined by frequency and rhythmicity, with distinct
functional roles for high-rhythmicity bands. Traditional power-based band-detection approaches often
overlook low-rhythmicity bands—but do these bands represent physiologically meaningful processes? Or
are they merely trivial by-products of rhythmicity peaks? In order to shed light on this question we turned
to sub-second manifestations of the spectral architecture. Specifically, we investigated a putative
relationship between rhythmicity and burst dynamics in EEG data.

We defined bursts as power peaks exceeding the 90th percentile (see Methods). Visual inspection in the
single-subject level revealed that bursts in high-rhythmicity bands (alpha, beta2) exhibited sustained
oscillations (>+3 cycles) with raw and filtered signals closely matching. Conversely, low-rhythmicity
bands (theta/alpha, betal) dampened within £1 cycle and exhibited phase differences between raw and
filtered signals (Fig. 3A), pointing to a link between shorter bursts and reduced phase-consistency in these
bands.

At the population level (N=37 subjects; see also fig. S3 for analysis across six EEG datasets (total of 178
subjects)), bursts in high-rhythmicity bands lasted significantly longer (3.5 vs. 2.9 cycles), a pattern
amplified when using Within-Trial Phase-Lock (WTPL %?), a time-resolved measure of phase-consistency
(5.3 vs. 3.6 cycles; Fig. 3B-C. See Supplementary table S1 for full statistical details). Conversely, low-
rhythmicity bursts occurred more frequently (Fig. 3D), resulting in comparable total durations during
which signals exceeded burst thresholds across bands (Fig. 3E), with high-rhythmicity bursts showing
slightly higher normalized amplitudes (Fig. 3F). Moreover, although instantaneous frequencies can drift
within bursts 1”2 (fig. S4), in both modes over 80% of peak frequencies during bursts were confined
within the LAVI-defined frequency band (Fig. 3G).

To rule out the possibility that these effects arose from 1/f (“pink™) noise, we compared the EEG data to
phase-randomized surrogate signals with matched 1/f power profiles. The simulated signals showed no
differences in burst rate or duration across frequencies (Fig. 3B-D, pink lines), and critically, the recorded
bursts differed significantly from these noise simulations. In a separate set of simulations we generated
bursts with varying length and quantified the resulting rhythmicity of the signal. Bursts shorter than four
cycles yielded rhythmicity below chance levels, while bursts longer than six cycles exceeded it (Fig. 3H-
I and fig. S4), supporting a distinction between transient and sustained rhythmicity. Together, these
findings suggest that bursts are epochs of band-confined activity: low-rhythmicity bands reflect brief,
transient bursts, whereas high-rhythmicity bands exhibit fewer but longer-lasting oscillations. This raises
the question: does this rhythmic architecture hold universally across contexts and recording modalities?
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1/f noise. Inset: LAVI at 15 Hz.

The rhythmic architecture is universal

Figure 3. Bursts affect
rhythmicity.

A. Raw bursts in two low-rhythmicity
bands (6/a, B1) and two high-rhythmicity
bands (a, B2), aligned to the trough nearest
max power (3 cycles). Black: raw signal
(one representative subject). Blue/green:
band-pass—filtered. ~ Grey:  band-stop
filtered (neighbouring bands removed).
Bottom row: average across bursts (“burst-
related potential”, BRP). Dotted lines mark
troughs; arrows indicate phase shifts, likely
due to neighbouring high-rhythmicity
bands. B-G. Burst statistics across low- and
high-rhythmicity bands (N = 37): B.
Duration based on power > 75™ percentile.
C. Duration based on rhythmicity (Within-
Trial Phase Lock; WTPL > 75™ percentile).
D. Bursts per minute. E. Occupancy
(proportion of time in bursts). F. Peak-
power relative to the 90th percentile
threshold.  G.  Frequency  overlap
(proportion of burst time with peak
frequency in-band). Dots: participant
means; violins: distributions; horizontal
line: medians. Pink element: medians and
Cls from 1/f-matched random-phase
simulations. **p < 0.01; ***p < 0.001. H.
Simulated bursts: pink noise was generated
from 1/f filtered white-noise. At 15 Hz,
filter weight doubled at time-points chosen
as bursts (variable length, yellow shading),
halved otherwise. 1. Rhythmicity profiles
of simulated data. Trace colour: burst
duration (corresponding to H and the
inset). Pink shading: LAVI range for
unmodulated pink noise; red: unadjusted

Establishing the rhythmicity-resolved spectral architecture as a universal phenomenon requires a robust,
diverse, and large sample. Therefore, we computed the rhythmicity spectra of data from 12 datasets
acquired from 2450 recording sites of 11 rats and 848 humans (with both invasive and non-invasive
methods; Table 1). Using LAVI and ABBA, we found the rhythmicity architecture consistently in all
datasets, and across ages, sexes, species, brain regions, and recording techniques, in health and disease.
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Table 1.
Recording Age
Dataset  Task/ population technique N subjects Recording sites mean (range) Ref.
I Visual duration judgement EEG 37 volunteers  Cz 22.9 (18-29) 22
I Eyes closed EEG 37 volunteers  Cz 22.9 (18-29) 22
i Tactile duration judgement EEG 29 volunteers  Cz 24 (19-31) 2
v Audio-visual illusion EEG 24 volunteers  Cz (18-42) 25
\% Memory-control EEG 27 volunteers  Cz 25 (20-34) %6
Vi Memory-control HD-EEG 24 volunteers  Cz (18-35) 27
Vil TMS EEG 6 volunteers F4 27 (19-37) New
VIl Rest MEG 625 volunteers 4 magnetometers  (18-88) 28
surrounding Cz
IX Epilepsy patients ECoG 10 patients 867 electrodes 41 (19-65) 29
(sites: Fig. 11)
X Epilepsy patients EEG + 12 patients 733 electrodes 27.5 (17-39) 30
SEEG (sites: Fig. 1J)
XI PD patients LFP 17 patients STNs from 30 58 (48-65) s
hemispheres
XIl Rats navigation LFP 11 rats Hippocampus 32

Details of datasets used in this study.

EEG: electroencephalogram, HD-EEG: high-definition (high-channel-count) EEG, TMS: transcranial magnetic stimulation,
MEG: magnetoencephalogram, ECoG: electrocorticography, SEEG: stereoelectroencephalogram (depth electrodes), LFP:
local field potentials (depth electrodes), Cz: midline central electrode, F4: right frontal electrode, Ref.: reference. PD:
Parkinson’s disease.

To determine whether the rhythmic architecture generalizes across recording modalities and brain regions,
we analysed spectral profiles from a large dataset comprising both invasive (ECoG, SEEG) and non-
invasive (EEG) recordings. We compared the distributions of peak frequencies across datasets (EEG, Fig.
4A-C) and neuroanatomical locations (ECoG, Fig. 4D-F; SEEG, Fig. 4G-I). Using ABBA, we
consistently detected the canonical sustained bands—®9, a, and f2—as well as the transient bands—o6/a,
B1, and y1—in nearly all participants (Fig. 4B, 4E, 4H). Detection rates were lower for 6 and /6, likely
due to our choice of 3 Hz as the lowest frequency analysed, which might not capture & and 6/6 rhythmicity,
resulting in a noisy estimate at these frequencies (i.e., the actual peaks may be in lower frequencies than
measured). Importantly, for most participants and electrodes, at least 6 out of 8 bands were detected (Fig.
4C, 4F, 41). To assess the statistical significance of these bands efficiently, and based on characterization
of the parameters affecting the noise ribbon (fig. S6), we first generated 200 random-phase surrogate
datasets to construct a reference table of null distributions, matched to a range of 1/f power profiles and
acquisition parameters. For each participant and electrode, we then selected the appropriate thresholds
from this table based on their individual power spectra, session duration and sampling-frequency. These
thresholds were applied within a Monte Carlo framework to determine which observed bands exceeded
chance levels. Across the 3—45 Hz range and at o = 0.05, the vast majority of detected bands were found
to be statistically significant. Notably, while differences in peak frequencies between datasets and brain
regions were observed within bands, the boundaries between bands remained stable—indicating that the
rhythmic architecture is robust.
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Figure 4. The rhythmicity architecture is universal.

A-C. Peaks and borders of rhythmicity bands across six EEG datasets (N = 178). A. Mean peak frequencies (dots) of high- (green) and low-
rhythmicity (blue) bands; thick horizontal bars: 95% CI of the peaks; thin horizontal bars span from the mean of the lowest to the mean of
the highest frequency in each band; stars: significant differences across datasets (ANOVA, p < 0.05). B. Proportion of participants with each
band detected (brown) and statistically significant (yellow); lines: mean; shading: +SD across studies. C. Cumulative proportion of
participants with >x detected bands; colour as in B. D-F. Same metrics for 867 ECoG contacts across six brain regions (dataset IX; legend

in D shows region names and electrode counts; SD in E-F over regions). G-1. Same for 733 SEEG contacts across seven regions (dataset
X).
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These consistent patterns across modalities and regions suggest that the rhythmic architecture may help
reduce uncertainties arising from methodological and species-related differences. For instance, whether
frequency bands identified in invasive recordings such as ECoG or SEEG correspond directly to those
observed in non-invasive EEG remains an open question, due to fundamental differences in spatial
resolution, depth sensitivity, and susceptibility to signal distortions 3. To address this, we leveraged a
unique recording setting including both scalp EEG and invasive electrodes in dataset X, allowing us to
directly compare rhythmicity profiles and individually defined bands between measurement modalities.
We found that while the average frequency profile of scalp electrodes tended to be higher than the invasive
counterpart (i.e., slightly faster; Fig. 5A) relative to invasive electrodes, the individual band peak
frequencies identified using ABBA were remarkably similar across measurement modalities (BF10=0.042;
BF01=23.8), providing strong evidence in favor of the null hypothesis of no difference between modalities
(Fig. 5B).

Furthermore, the invasive recordings from patients’ hippocampi enabled a cross-species comparison of
rhythmic architecture with rats. A longstanding debate concerns whether human alpha oscillations (8-12
Hz %) are functionally analogous to rodent theta (4-12 Hz 34). While some argue these rhythms reflect
similar mechanisms despite frequency differences *>%, others question whether rodents exhibit alpha at
all, noting their hippocampal activity is dominated by theta *8. To address this and test whether the
rhythmicity architecture generalizes across species, we analyzed hippocampal recordings from 11 rats
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(Dataset XII). As in humans, both sustained and transient bands from 0 to y1 were detected in nearly all
rats (100% for 6—y1; significant in 100% for 6/a, a, and B1; 90% for B2; 82% for 6 and y1). Although
rhythmicity magnitudes were higher in rats (note scale in Fig. 5C), band frequency distributions were
strongly conserved across species (BFo1 = 10.99, Fig. 5D). Notably, the dominant peak in rats was around
8 Hz—1labelled ‘theta’ in the original publication of dataset XII %2, but identified as ‘alpha’ by ABBA—
suggesting that rodent theta reported in the literature may correspond to human alpha, as the most
prominent rhythmic band below ~15 Hz. To further assess the generalizability of rhythmicity architecture,
we examined potential sex differences in Dataset VIII. LAVI and ABBA analyses (Fig. 5SE-F) showed
comparable rhythmicity profiles and band peak frequencies between female and male participants, with
strong evidence for no difference (BFo1 = 43.25).
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Figure 5. Rhythmicity reduces uncertainties in existing data

A, B. LAVI (A) and ABBA (B) analyses of concurrently recorded LFP and EEG in patients (dataset X) reveal that population averaged EEG
band peaks tend to be faster (rightward shift of yellow vs. brown line). However, at the individual level, Bayes factor values below 1 indicate
similarity between recording methods. C-D. Comparison between human hippocampal SEEG (dataset X) and rat hippocampal LFP (dataset
XI1). Bayes factor analysis provides evidence for no difference between species in Alpha, Betal, Beta2, and Gammal bands E-F. The
rhythmicity architecture of female and male participants from dataset V111 is similar. In A, C, and E lines indicate means and shaded areas
represent SEM; numbers in denote electrode counts. In (B, D, F), dots mark mean peak frequencies per band, with thick horizontal bars
showing 95% confidence intervals and thin bars the interquartile range. Black numbers above each band show between-group Bayes factors
from t-tests.

Taken together, these findings reveal a dual-mode rhythmicity architecture: sustained bands characterized
by long-lasting oscillations, and transient bands dominated by brief bursts. This architecture generalizes
across datasets, brain regions, recording modalities, sexes, and species, supporting the idea of a universal
organizing principle. We now turn to our final prediction: that these distinct rhythmic modes should
differentially reflect and respond to varying brain states and input processing demands.
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The rhythmic architecture reflects brain states

To explore how rhythmic modes reflect brain state, we first investigated age-related changes in
rhythmicity magnitude and peak frequency. Aging is associated with widespread changes in brain
structure and function, many of which are linked to cognitive decline *°. Neural oscillations, particularly
in the alpha band (~8-12 Hz), are known to decelerate and reduce power with age, correlating with
reduced processing speed and diminished attentional control #°. However, more recent studies suggest that
such effects may partly stem from changes in the aperiodic background signal . Aging thus provides a
valuable testbed for examining whether the rhythmicity architecture reflects changes in brain state.
Because LAVI1and ABBA are less influenced by variations in the 1/f slope—owing to their use of a robust
baseline— they enable assessment of age-related changes without confounds that have limited previous
analyses **. We analysed rhythmicity profiles from magnetoencephalography (MEG) recordings of a large
cohort of healthy individuals spanning the adult lifespan (N = 625, ages 18-88; Dataset VIII %). We
observed age-related reduction in rhythmicity magnitude and frequency not only in alpha but also in other
sustained (delta, theta, and beta2) and transient bands (theta/alpha and betal; Pearson correlation per
participant and ANOVA per age decade group, Fig. 6A and 6B and Table S1). These findings indicate
that both sustained and transient rhythmic modes are sensitive to age-related brain changes, underscoring
their utility as markers of brain state across the lifespan.

This large-scale group characterization provides a normative reference for neuro-typical aging. We next
asked whether the rhythmic architecture is sensitive also to pathological brain states. To address this, we
compared rhythmicity profiles of LFP recordings from sub-thalamic nuclei (STN) of Parkinson’s disease
(PD) patients, with (i.e., “ON”) and without (i.e., “OFF”) medication (N = 17 patients, 30 hemispheres;
Dataset X1). In PD, beta power (~13-30 Hz) is known to increase “2. Activity in the beta band is believed
to be controlled by the level of dopaminergic activity in response to internal and external cues, and
following dopaminergic cells’ loss, beta levels are elevated in PD *3. We found a significant increase in
rhythmicity OFF medication compared to ON in the entire beta-band (15.0 - 26.6 Hz, p<0.05, cluster
permutation test; Fig. 6C). Notably, using a permutation test with stricter threshold of p<0.01 the
medication effect was localized to the transient band betal (15.8 — 20.0 Hz, p<0.01). This suggests that
while PD pathology elevates rhythmicity across the beta range, the effect is particularly pronounced in the
transient band betal, implicating burst dynamics in the pathophysiology. Indeed, prior studies have linked
increased STN beta power to prolonged beta bursts, which are shortened in response to medication 4+%°.
To further explore whether the pathological burst dynamics are related to rhythmicity modes, we
compared burst duration and rate in betal (15.8 — 20.0 Hz) and beta2 (20.1 - 26.6 Hz) from STNs
exhibiting medication-related betal power modulation (median split). We found significantly longer burst
durations OFF medication specifically in betal (p < 0.01; Fig. 6D). No significant differences were
observed in burst durations for beta2 or in burst rates for either beta band (Fig. 6E; all p > 0.15).
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Figure 6. Rhythmicity changes in healthy-aging and disease
A c. A, B. LAVI (A) and ABBA (B) analyses

Age group 0.5 over the adult lifespan (Dataset VIII). In A,
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Dual Rhythmic Modes and Input Processing

The modulation of rhythmicity by engagement, age, and disease (Figs. 2D and 6) suggests a recurring
pattern of sensitivity to brain states. To investigate how this architecture supports cognition, we next
examined how its distinct modes operate on shorter timescales during input processing. Specifically, we
asked whether sustained rhythms, being stable over many cycles, support ongoing maintenance, while
transient rhythms, being brief and event-linked, reflect responsiveness to change. To test this, we
employed two complementary approaches: responses to visual stimuli recorded from invasive ECoG
electrodes, and responses to transient, rhythmic, and arrhythmic TMS stimuli recorded using EEG.

Participants in Dataset IX (N = 10) performed a visual perception task while neuronal activity was
recorded using electrocorticography (ECoG). As previously reported 2°, analysis of high-frequency (HF;
70-150 Hz) signal amplitude—an established proxy for neuronal firing—revealed that among 157
contacts over the occipital cortex, 90 (57%) exhibited increased HF activity in response to a brief (300
ms) visual stimulus, while 36 (23%) showed decreased activity (Fig. 7A; 31 contacts [20%] were non-
responsive and are not shown). We consider the increased-HF channels as positively responding to the
input and engaging in its processing and the decreased-HF channels as negatively responding, potentially
engaged in other, ongoing processes. Thus, according to the framework of the rhythmic architecture, we
predicted the former group to be coupled with transient bands, and the latter with sustained bands.
Furthermore, in the absence of input, we expect neuronal firing of both groups to correlate with activity
in sustained bands.
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To explore how these two neuronal subpopulations relate to rhythmicity in response to input, we computed
the average within-trial phase-locking value (WTPL) aligned to stimulus presentation (Fig. 7B). As
previously reported 2, sustained-bands exhibit high WTPL values at baseline. We leveraged this property
to compute the task-specific rhythmic profile as the mean WTPL during the 300 ms preceding stimulus
onset. We then assessed how rhythmicity changed in response to input by computing the WTPL
normalized via baseline subtraction (AWTPL). In both channel types (increased and decreased HF), we
observed increased rhythmicity in transient bands and decreased rhythmicity in sustained bands following
stimulus onset. The two subpopulations diverged at frequencies above ~20 Hz, where channels with
increased HF activity exhibited elevated rhythmicity.

Next, we sought to investigate how neuronal firing-rate and ongoing oscillatory dynamics relate to
cognitive states. Here too, we use the HF as a proxy for firing-rates and quantify the covariance between
HF amplitude and the amplitudes of each of the lower frequencies (LF, 3-45 Hz). We predicted that
positively responding contacts would exhibit stronger HF-LF covariation within transient bands upon
stimulus presentation, reflecting their participation in input processing. In contrast, contacts that are
inhibited by the stimulus would exhibit stronger HF-LF covariation within sustained oscillation bands,
reflecting their involvement in computations other than the transient input. We found that over the whole
session, where in general the amount of input is low, HF significantly covaried more with activity in the
sustained band theta (defined by LAVI and ABBA,; Fig. 7C, grey traces; increased-HF channels: 5.0-6.0
Hz; decreased-HF: 5.8-6.4 Hz), and less in alpha (increased-HF: 7.2-10.3 Hz; decreased-HF: 7.8-9.8 Hz).
In contrast, when focusing on the time of visual input (0 to 0.2 s after stimulus onset; Fig. 7C, purple
traces), positively responding channels increased their HF-LF covariance at the transient band theta/alpha
(Fig. 7C, left panel; frequencies significantly [p < 0.01] higher than whole session: 5.9-7.1 Hz). Negatively
responding channels, conversely, shifted their strongest HF-LF covariance into the alpha range (with
additional effects in betal: 8.4-16.8 Hz; Fig. 7C, right panel), supporting a role of alpha in inhibition 464

Having observed how transient discrete inputs are associated with rhythmicity, we next examined how
repetitive inputs—both rhythmic and arrhythmic—relate to the architecture. To this end, we used
Transcranial Magnetic Stimulation (TMS) to deliver transient, rhythmic, and arrhythmic inputs (Fig. 8A).
Single TMS pulses evoked characteristic EEG responses consisting of a sequence of peaks and troughs
(“ripples”; Fig. 8B). Consistent with previous studies 8, this response was reflected in increases in the
power across a wide range of frequencies (Fig. 8C). However, according to the rhythmic architecture
framework, the rhythmic response to brief events should be confined to the transient bands. To test this,
we measured time-resolved rhythmicity (WTPL), and found that ripples were associated with significantly
increased rhythmicity specifically in the transient bands 6/a, 1, and y1 (p<0.05, cluster permutation test;
Fig. 8D), lasting up to 300 ms post-stimulation.

For repetitive inputs, we predicted that rhythmic stimulation (i.e. fixed inter-pulse interval [IP1]) would
increase EEG-measured rhythmicity, whereas arrhythmic stimulation (random IPI) might violate phase
consistency and thus disrupt ongoing oscillations, particularly in sustained bands. To test this, we
computed each participant’s rhythmicity profile at rest and determined their individual alpha, betal, and
beta2 peak frequencies. For each band, we then delivered 60 rhythmic trains of six pulses each, with IPIs
fixed to match the cycle length of the band’s peak frequency. The arrhythmic condition also consisted of
60 trains of six pulses, matched in total duration between the first and last pulses but with random temporal
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placement of the pulses within the sequence. Similar to single pulses, each repetitive impulse induced a
strong peak and valley (Fig. 8E). In the rhythmic condition, these individual responses were temporally
aligned with the band’s oscillations (note phase-lock between pulses and the filtered EEG signal in Fig.
8E). As a result, WTPL values during rhythmic stimulation significantly increased relative to pre-stimulus
baseline in all bands (Fig. 8F).
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Figure 7. Band-specific
responses to visual stimulation

A. Visual stimulus presentation elicited
changes in high-frequency activity (HF;
70-150 Hz, a proxy for firing rate) over
occipital ECoG contacts (Dataset 1X). Of
these, 57% (n = 90) showed an HF increase
(left), while 23% (n = 36) showed a
decrease (right). Panels B-C are also
divided to increased (left) and decreased
(right) units. B. Within-trial phase-locking
values (WTPL) across frequencies,
normalized to a 0.3 s pre-stimulus baseline.
Vertical blue and green vertical element on
the right side of each panel indicate mean
frequencies of transient and sustained bands
across participants, respectively, computed
as the WTPL mean over time during the
baseline; white dots mark the mean peak
frequency per band. Black contours denote
clusters with p < 0.01 (cluster-based
permutation test on t-values). Notably,
AWTPL increased in transient bands
(6/a, B1) and decreased in sustained bands
(0,0). C. Low-frequency (LF)-HF
amplitude covariance (ACOV). Grey:
ACOV computed over the whole session;
purple: ACOV during 0-0.2 s post-
stimulus.  Horizontal lines indicate
significant differences (p < 0.01) between
the stimulus period and the session
baseline. Band marks (horizontal blue and
green elements at the top of the panels)
were computed using ABBA over the
whole session (similar to B).

Arrhythmic repetitive stimulation induced band-specific effects. In the sustained bands alpha and beta2,
arrhythmic stimulation decreased rhythmicity relative to baseline (blue clusters around peak frequency
(0), Fig. 8F), implying that the arrhythmic pulses disrupted ongoing oscillations. In betal, however,
arrhythmic stimulation increased rhythmicity relative to baseline up to 200 ms after the last pulse. This
likely reflects the summed contributions of individual pulse responses, as each pulse responses contains a
prominent betal component (see single-pulse results in Fig. 8D). Together, these results support our
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hypothesis that low-rhythmicity bands consist of transient yet spectrally defined activity driven by discrete
inputs, whereas high-rhythmicity bands reflect sustained oscillations.
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Figure 8. Band-specific responses to TMS stimulation

A. Stimulation protocol. TMS over the right dorsolateral prefrontal cortex (rDLPFC) alternated randomly between single pulses and trains
of six rhythmic or arrhythmic pulses (yellow vertical lines). B. Single-trial responses (top three traces) and the averaged response (bottom
trace) to single-pulse stimulation from a representative participant. Black: raw signal; blue: signal filtered in the betal band. Shaded area
represents £SEM (barely visible due to low variation levels). C-D. Population averaged (N = 6) power (C) and Within-Trial Phase-Locking
value (WTPL; D) at each frequency, normalized to a 0.5-1 s pre stimulation baseline. Trace plotted to the right of the panel depicts the mean
power during the first 200 ms after TMS (C) or baseline rhythmicity during the [-1 -0.5] s baseline window (D). Blue and green vertical
elements indicate the mean frequencies of transient and sustained bands across participants, respectively. White dots mark the mean peak
frequency per band. Black contour denotes clusters with p < 0.05 (cluster-based permutation test over t-values). Yellow line at time = 0: TMS
single-pulse. Notably, following the TMS pulse, power increases in a wide range of frequencies, while WTPL values increase specifically at
transient bands. E-F. Repetitive TMS. E. Single-trial responses (top three traces) and the averaged response (bottom trace). Black traces: raw
signal; coloured time-series (green and blue) indicate signals filtered at the band used for rTMS. F. WTPL. Yellow vertical lines mark the
first and last TMS pulses. Frequencies (ordinate) are shown relative to the individual peak frequency of each participant in each band. Black
contour: significant (p < 0.05) cluster, permutation test.

15


https://doi.org/10.1101/2024.12.05.627113
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.05.627113; this version posted September 12, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Discussion

In this study we uncover a universal rhythmic architecture composed of two types of bands — sustained
and bursty — which alternate intermittently along a logarithmically scaled frequency axis. Rhythmicity
(i.e., sustained and bursty) is revealed as a fundamental and previously overlooked dimension of brain
dynamics (Fig. 9). This functional segmentation of spectral activity provides a principled basis for
defining frequency bands, which is essential for aligning methodologies across studies (Fig. 5).
Furthermore, rhythmicity-based spectral segmentation reveals twice as many bands as previously
described with two divergent modes of operation: activity in transient bands indicates neuronal inputs,
whereas activity in high rhythmicity bands signifies maintenance of neuronal activity via sustained
oscillations. This duality can conceivably expand the capacity and efficacy of neuronal computations and,
with a spectrum spanning several orders of magnitude °, can equip the brain with the flexibility necessary
for a wide range of cognitive functions.
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Figure 9. Rhythmicity reveals a bi-dimensional architecture.

Brain rhythms can be classified along a new dimension of rhythmicity, revealing a universal spectral architecture: high-rhythmicity
(sustained) bands maintain ongoing activity, while low-rhythmicity (bursty) bands denote the response to change. This framework generalises
across species, sexes, recording techniques, and cognitive states. A. Traditional view — the spectrum is divided to logarithmically progressing
oscillatory bands. Role of activity expressed in the gaps between band (blurred grey borders) is unclear. B. Proposed view — rhythmicity
dimension distinguishes sustained (green) vs. bursty (blue) bands. C. Functional division between the two rhythmicity modes. Bursty bands
are associated with the processing of transient incoming inputs (metaphorized as ripples resulting from a drop of water). Sustained bands
enable the maintenance of brain states and the putative orchestration of engaged brain areas (metaphorized as a telecommunication through
sustained radio frequency, green). Artwork credit: droplet adapted from Allvectors.com under CC BY 4.0 licence; telecommunication
contributed to the manuscript by Mirjam Karvat.

Segmenting the spectrum according to rhythmicity also opens up theoretical avenues for understanding
how different rhythmic regimes may support distinct neural coding strategies. For example, the bi-
dimensional organization of spectral phenomena can bridge two prominent views of the brain’s modus
operandi, namely phase-coding “° and rate-coding *°. These views differ regarding whether the precise
timing of neuronal outputs encodes information about neuronal inputs. Phase-coding posits that
oscillations temporally bias neuronal responses to inputs: synaptic inputs that arrive during the excitable
phase of an oscillation are more likely to cause outputs; whereas inputs arriving at the opposite phase get
dismissed or curtailed 5%°2. According to this view, oscillations causally influence the formation,
synchronization, and sequence of cell assemblies, communication efficacy, and ultimately, an organism’s
behaviour %5355 Within the rhythmic architecture framework, this suggests that sustained oscillations
may maintain temporal scaffolds for coordinating neuronal responses. Much like radio signals rely on
stable carrier frequencies to transmit information, sustained rhythms may facilitate local and distant
communication by aligning excitability windows across neuronal populations and networks 56",
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In contrast, rate-coding proposes that the rate at which neurons fire contains all relevant information.
According to one interpretation of rate-coding *°, enhancing neuronal firing-rate suffices for assembly
formation, deeming oscillations unnecessary. In the context of rhythmic architecture, previous studies
have shown that surges in firing rate tend to align with troughs of field potentials during oscillatory
bursts—initially observed in the gamma- 2>°8 and beta-bands >° and more recently across the entire 3—
120 Hz spectrum 2. Thus, even if oscillations are not required for information transfer per se, they serve
as a valuable indicator of moments of heightened neuronal activity. Much like ripples on a calm water
surface mark the impact of a falling object, oscillatory bursts—confined to low-rhythmicity frequency
bands—act as spectral markers of cognitively relevant events.

An important advantage of introducing rhythmicity as an additional dimension is that it allows us to build
upon, rather than discard, prior knowledge. We do not suggest that all transient bands, or all sustained
bands serve the same function. There remains considerable scope for functional specialisation among
specific bands. For example, within sustained rhythms, alpha activity is often associated with the
maintenance of a widespread, general rest state ®3, whereas beta2 has been linked to keeping more targeted
forms of cognitive control 5L,

Turning to transient bands, these may reflect inputs from distinct sources. For instance, evoked
responses—often considered the frequency-domain analogue of time-domain event-related potentials—
are typically dominant just below 10 Hz ®, suggesting that the theta/alpha transient band may reflect
broad, stimulus-driven synchronisation. In contrast, beta bursts have been associated with the spontaneous
activation of neural networks, where coincident bursts across regions may indicate functional
connectivity ®°. In this context, betal may be conceptualised as reflecting internally generated inputs, such
as packets of action potential sent from one brain region to its targets . These examples highlight the
potential of rhythmicity-based segmentation to support a more nuanced functional characterisation of the
electrophysiological spectrum in future studies.

Our consistent observation that broad frequency bands can be subdivided into rhythmically distinct sub-
bands may help clarify longstanding ambiguities about their functional roles. For instance, activity within
the canonical beta band (~12-30 Hz) has been associated with both sustained and burst-like dynamics.
When conceptualised as sustained oscillations, beta is thought to support the maintenance of ongoing
motor or cognitive states—for example, continuous beta activity over sensorimotor cortex has been linked
to tonic motor inhibition or postural maintenance , and sustained beta synchronisation in frontoparietal
networks has been associated with stabilising cognitive sets and top-down control, suggesting a role in
signalling the cognitive status quo ®!. Conversely, when viewed as transient bursts, beta activity has been
linked to event-related processes, such as brief motor cortex beta bursts marking movement termination 6
or successful inhibition in stop-signal tasks 2. Notably, one study ! demonstrated that both transient and
sustained beta responses can co-occur within individuals, varying with task stage—transient responses
following informative cues, and sustained responses during anticipatory periods. These were also
spectrally distinct, occupying different sub-bands within the broader beta range. It is therefore plausible
that previously reported, and at times seemingly contradictory, functional roles attributed to beta activity
may in fact reflect spectral segregation into low- and high-rhythmicity sub-bands within the band referred
to as beta.
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A further promising direction for future research concerns the interactions between neighbouring
frequency bands. We observed that high-rhythmicity bands can suppress the emergence of oscillations in
adjacent bands via phase interference (Fig. 3A). Specifically, ongoing oscillatory activity in a dominant
high-rhythmicity band may curtail the development of nearby rhythms through phase-based interactions
(i.e., interference). This interpretation is supported by our finding that removing the high-rhythmicity band
using a stop-band filter abolished the observed phase shift (Fig. 3A), consistent with LAVI’s sensitivity
to phase differences. This interpretation, together with the dominance of high-rhythmicity events (higher
power even when normalized to compensate the 1/f slope, Fig. 3F) also carries intriguing implications for
the broader operational principles of the brain. It raises the possibility that high-rhythmicity bands may
serve to establish dedicated “quiet” spectral zones—frequency ranges held in readiness for incoming
input. In such a scenario, an external or internal input would produce a brief, ephemeral response, which
is then rapidly curtailed by the surrounding rhythmic context. This mechanism would not only support a
top-down role for sustained oscillations but also suggest that such control is not purely inhibitory. Rather,
it may enhance contrast and selectivity by dynamically shaping the spectral landscape to prioritise
response-relevant signals.

While our findings offer compelling and consistent insights into the functional architecture of brain
rhythms, it is important to acknowledge certain limitations that may inform future refinements and
interpretations. First, for practical reasons, we have chosen to focus on the 3-45 Hz range. This choice
limited our ability to characterise dynamics in both lower (notably & and /0) and higher (y and higher
frequencies) frequency bands (Fig. 4). Nonetheless, both LAVI and ABBA are applicable to these ranges,
provided that specific considerations are taken into account. For low frequencies, LAVI’s noise levels are
influenced by session duration (fig. S6); thus, for frequencies below 3 Hz, we recommend using recordings
of at least several minutes. Conversely, high-frequency LAVI is sensitive to the sampling rate, and we
advise a minimum sampling frequency of 1 kHz. Additionally, power line noise (50/60 Hz) is highly
rhythmic and can substantially affect frequencies above ~40 Hz. Strong notch filters are not recommended,
as they distort the rhythmicity of neighbouring frequencies (Fig. 31, blue traces). Instead, we suggest using
approaches such as spectral interpolation ¢, which minimise distortion in the time domain while
effectively reducing line noise.

Second, while our TMS findings provide causal support for the proposed spectral architecture, we
acknowledge that neurostimulation studies inherently involve greater variability and interpretative
complexity than observational analyses. Although the current protocol yielded informative results
consistent with previous reports of spectrally confined responses to single-pulse TMS “8, it was
constrained by factors such as sample size and the absence of behavioural correlates. Future studies could
strengthen these findings by incorporating larger and more diverse cohorts, as well as concurrent
behavioural or task-based measures to directly link rhythmicity modulation with cognitive function. Such
refinements would enable a more precise characterisation of how rhythmic and arrhythmic inputs interact
with distinct spectral modes and their functional relevance.

Despite these methodological limitations the present study points toward exciting future directions for
investigating the basis and function of neural rhythmicity. The origins of neural oscillations—though
extensively explored in both experimental and computational domains—can now be explored through
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the prism of distinct rhythmicity modes. A promising direction for future research lies therefore in
exploring how the rhythmic architecture described here might reshape our understanding of the
anatomical and computational bases of oscillatory activity. For instance, could certain anatomical
structures be more conducive to one rhythmicity mode over another 12 Might distinct mechanisms
underlie the generation of oscillations in the two modes—such as PING (pyramidal-interneuron gamma)
circuits for bursty activity 8, versus pacemaker cells for sustained rhythms 8°? (For a comprehensive
review, see '°.) Furthermore, identifying the computational principles that best account for these two
modes of operation—and understanding their functional and cognitive consequences—represents an
exciting avenue for future investigation.

In conclusion, our findings introduce rhythmicity as a fundamental dimension of brain dynamics,
supporting a dual sustained—bursty spectral architecture that underpins flexible and efficient neural
computation. This framework generalises across species, sexes, recording modalities, and cognitive states.
The practical implications of these theoretical insights are considerable: an individualised, detailed, and
statistically robust spectral segmentation can be harnessed to inform brain stimulation protocols, enable
non-invasive diagnostics for neuropathology, and guide the development of novel brain—computer
interfaces.

Methods

Participants and data acquisition

We sought to establish the rhythmicity architecture as a universal phenomenon, therefore we analysed
datasets from different laboratories and recording techniques. Details of the original publications from
which data were analysed in this study is presented in the main text, Table 1.

EEG acquisition and preprocessing

We performed all offline preprocessing and analysis steps using the Fieldtrip toolbox, release 20230822
™t and custom code in Matlab 2020b (MathWorks, Natick, MA). In datasets I-111 2224, data were sampled
at 512 Hz using a g.GAMMACcap (gTec, Schiedlberg, Austria) and a g.Hlamp amplifier (gTec). The cap
had 62 electrodes distributed over the scalp, with the addition of two active earlobe electrodes. All
electrodes were re-referenced offline to the average of the earlobe electrodes. In dataset IV %, data were
sampled at 2048 Hz using an ActiveTwo EEG system (Biosemi, Amsterdam, Netherlands). The cap had
32 electrodes that were re-referenced offline to the average of two electrodes over the temporal lobe (T7
and T8)*. Data in dataset V 2° was recorded with a Neuroscan (Compumedics, El Paso, TX, USA) NuAmps
amplifier, with 30 channels sampled at 1000 Hz and re-referenced to electrodes over he left and the right
mastoid. In dataset VI 27, data were acquired from 128 channels using EGI Hydrocel Geodesic Sensor Net
(HGSN-128, Magstim EGI, Eugene, OR), sampled at 1000 Hz, and re-referenced offline to the average
of all channels.

1 As recommended for channel level analysis when earlobe electrodes are unavailable, see
https://www.fieldtriptoolbox.org/getting_started/biosemi/
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All succeeding preprocessing procedures were identical for all EEG datasets. We detrended, demeaned
and bandpass filtered the data at 0.5-130 Hz. Then, we inspected the data visually and rejected bad
channels, inserting interpolation of neighbouring channels instead of the bad channels. On average, we
rejected 8.54% of electrodes from dataset | (SD 1.65%), 0.04% (0.26%) from dataset 11, 2.3% (3.2%) from
dataset 11, 1.17% (2.22%) from dataset 1V, 4.5% (1.9%) from dataset V, and 5.9% (5.0%) from dataset
VI. Importantly, channel Cz, which was used for rhythmicity and oscillatory bursts analyses, was good
for all 178 EEG subjects. Scalp muscle artefacts were detected and marked as epochs in which the
amplitude of the signal at 100-120 Hz at all channels exceeded a threshold of 30 standard deviations.
Finally, independent spatio-temporal components containing eye movements (blinks and saccades) were
removed using independent component analysis (ICA). We preformed all preprocessing steps, as well as
rhythmicity (LAVI), power, and oscillatory bursts analyses, on the whole session (that is, without dividing
into trials).

For ECoG (dataset 1X) we used all 907 channels reported “clean” in the original publication . In the
per-area analysis (Fig. 4D-F) we excluded electrodes reported as “Medial” due to low count (n=12), or
those that were marked as depth electrodes, and therefore lacked a cortical area assignment (n=28). After
exclusion, this analysis consisted of 867 electrodes. For SEEG (dataset X 3°) we used 733 electrodes
reported as located in mesial-frontal, lateral-frontal, insula, medial-parietal, lateral-parietal, lateral-
temporal, or mesial-temporal areas. In addition, for each area, we included the nearest concurrently
recorded EEG scalp electrode. For LFP recordings, we used one STN channel from each hemisphere On
and Off PD medication in dataset XI 3! sampled at 2048 Hz using a TMSi Porti (TMS International,
Netherlands) or from the hippocampus of each rat in dataset XI1 %,

MEG acquisition and preprocessing

MEG data came from Stage 2 of the Cambridge Centre Aging and Neuroscience (Cam-CAN; www.cam-
can.org; '?) study of healthy adult ageing (aged 18-88 years). Ethical approval was obtained from the East
of England-Cambridge Central Research Ethics Committee, and participants gave full informed consent.
A detailed description of exclusion criteria can be found in "2, Table 1. Of these, only participants with
resting state MEG data that could be corrected for motion using MaxFilter were used here (n=625).

MEG data were collected using a 306-channel VectorView MEG system (Elekta Neuromag, Helsinki),
consisting of 102 magnetometers and 204 orthogonal planar gradiometers, located in a magnetically
shielded room. MEG resting state data (sampled at 1 kHz with a high-pass filter of 0.03 Hz) were recorded
approximately 8.5 mins, while participants remained still in a seated position with their eyes closed, but
instructed to stay awake. Head position within the MEG helmet was estimated continuously using four
Head-Position Indicator (HPI) coils to allow offline correction of head motion.

The MaxFilter 2.2.12 software (Elekta Neuromag Oy, Helsinki, Finland) was used to apply temporal
signal space separation ™ to the continuous MEG data to remove noise from external sources (correlation
threshold 0.98, 10-sec sliding window), to continuously correct for head-motion (in 200-ms time
windows), to remove mains-frequency noise (50-Hz notch filter), and to detect and reconstruct noisy
channels. Following these de-noising steps, data were imported into Matlab using SPM12
(http://www.fil.ion.ucl.ac.uk/spm). These data are available on request from https://cam-can.mrc-
cbu.cam.ac.uk/dataset/.
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The first 20 seconds of data were ignored to allow participants to settle, and any samples after 542 seconds
were ignored, in order to match data length across participants (to the minimum duration across
participants). These data were then extracted from 4 magnetometers around Cz.

Lagged Angle Vector Index (LAVI)

We measured rhythmicity as the consistency of the relations of phase (angle) between data points
separated by a fixed number of cycles (“lag”, with the corresponding duration in ms determined by each
frequency, and see Fig. 1 for considerations for choosing lag duration). The rational for defining
rhythmicity in this manner is that the phase of a sustained oscillation at any time-point should predict its
future phase 18,

We computed the time-frequency representation x for each time-point t and frequency of interest f using
complex Morlet wavelets, of the form

(—z(nft)z) .
w(t, f) = de\ m? Je@infD) Equation 1

where i is the imaginary unit and m is the wavelet width, measured in cycles. The normalization factor

was A = /fo/ﬁ/m. The value of m was set to 5, based on the exploration presented in Fig. 1E and fig.

S2D. Care was taken to produce angles with the following convention: cosine must always be 1 and sine
must always be cantered in upgoing flank, so the centre of the wavelet has the angle of 0 rad "*. The time-
frequency representation was computed by convolving the signal with the Morlet wavelets at each
frequency. For computational efficiency, this was implemented in the frequency domain by multiplying
the Fourier transform of the signal with the Fourier-transformed wavelets, and applying an inverse Fourier
transform to obtain the time-varying complex spectra at each frequency. Then, the rhythmicity A was
measured for each frequency as the magnitude of the vector mean vector of all angle differences
(“coherence”) between the original time-frequency representation £ sy and a copy of itself with a constant

lag of 1 cycles a?(HL(f),f):
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A(f) = Equation 2

where T is total number of time points in the session, L is the number of time points in t cycles and the
superscript ' denotes the complex conjugate transpose. By definition, A assumes values between 0 and 1.
The median of A (over f) is stable across subjects and depends on m and t. Based on the exploration
presented in Fig. 1D and fig. S2D, we set t to 1.5 cycles, which together with m =5 cycles yields a median
A of ~0.4, providing a good dynamic range (for further discussion, see Supplementary Text, Parametrical
effects on rhythmicity measures).

21


https://doi.org/10.1101/2024.12.05.627113
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.05.627113; this version posted September 12, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Automated Band Border Algorithm (ABBA)

Using the LAVI median as a threshold, one can define areas above the median as “sustained” bands, and
areas below as “transient” bands. However, fluctuations above and below the median are present also in
the rhythmicity profiles of purely random signals (noise). The median of the rhythmicity profiles of noise
also depends of m and t, and their dispersion range depends on the sampling frequency, session duration,
and the aperiodic slope (for further discussion, see Supplementary Text, parametrical effects on
rhythmicity, and fig. S6). This relationship can be leveraged to determine spectral bands with statistical
confidence using a bootstrap approach: frequencies whose rhythmicity levels exceed (or fall below) the
top or bottom k observations from n bootstrap samples of noise can be considered sustained (or transient),
corresponding to a two-tailed Type I error rate of a = k/n. In our analysis, we generated n = 200 surrogate
noise samples and identified frequencies as sustained or transient if their rhythmicity levels fell within the
top or bottom 2.5% (k = 5) of the bootstrap distribution (a. = 0.05).

To generate the distribution of rhythmicity profiles we generated surrogates that matched the aperiodic
component (1/f) of each subject. We calculated the aperiodic component of the EEG by fitting an
exponential function to the EEG power spectrum, and used the fitted values as the input for an Iterative
Amplitude Adjusted Fourier Transform algorithm (IAAFT, '+7%). IAAFT generates surrogate time series
with a desired power spectrum (in the frequency domain) and data values (in the time domain) by keeping
the original magnitude of the Fourier coefficients and assigning random phases. In each iteration of the
algorithm there are five steps: a. initializing with a randomly shuffled version of the original time series
to destroy temporal correlations while preserving the amplitude distribution; b. computing the Fourier
transform of the shuffled time-series; c. replacing the magnitude of the Fourier coefficients with the
desired magnitudes (i.e., those of the original time series) while keeping the current (random) phase; d.
computing the inverse Fourier transform to obtain a new time series with the desired spectral properties,
and e. matching the amplitude distribution: this is done pointwise by ranking the new time series and
replacing its values with those of the original series sorted by rank (e.g., the highest value in the new series
receives the highest value of the original series, the second-highest receives the second-highest, etc.).
Since step (e) alters the spectral properties, this algorithm is repeated iteratively until the error between
the desired and current spectra falls below a defined threshold (here, 2x10* of the original standard
deviation).

The IAAFT implementation for Matlab * can take the original EEG values as input, but since noise levels
can be predicted from experimental parameters (Supplementary Text—Parametrical Effects on
Rhythmicity, and fig. S6) and in order to save computational time and facilitate the computation of
hundreds of channels, we generated surrogate distributions of 200 repetitions with different sampling
frequencies, durations, and aperiodic exponents. This resulted in a look-up table that was used to define
significance limits for each frequency and channel with o = 0.05. Then, ABBA defines each frequency
with a LAVI value above (below) the significance limit as significantly sustained (transient). Frequencies
between points of crossing the median are then grouped into bands. The local maximum is taken as the
peak frequency of sustained bands, and the local minimum is the peak frequency of transient bands. Since
most subjects have a clear peak in the rhythmicity profile at the alpha band, the peak between 6 to 14 Hz
can be used as an anchor to automatically allocate bands identity: the frequency with highest rhythmicity
between 6 and 14 Hz is taken as alpha, the trough following alpha, as the frequency increases (i.e., to the
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right of alpha) is betal, the next peak is beta2, and so forth, and also for frequencies lower than alpha. A
Matlab implementation for LAVI and ABBA (including pink surrogate and look-up table generation) is
available at https://github.com/laaanchic/LAVI. This code is using functions provided by Fieldtrip "* and
Venema V. ”/, and is shared under the GNU General Public License (GPL) and Berkeley Software
Distribution (BSD) license, respectively.

In fig. S2 we compare band-detection with LAVI and ABBA to a commonly used power-based method.
To this end, we computed the power spectrum of the EEG of 90 participants (using the Matlab function
‘pwelch’), and used Spectral parameterization (specparam, formerly fooof &) with recommended default
configurations to detect the range and peak frequency of bands in the frequency range 2-40 Hz.

Simulations

For all simulations presented in Figs. 3, S1, S4, and S5, we generated 180 s “pink™ surrogate data using
IAAFT, with aperiodic exponent of -1, range of ~100 uV, mean 0 uV and SD ~12.5 uV. To manipulate
the activity in a specific frequency band, we first decomposed the original signal using an array of third-
order Butterworth bandpass filters (centred at 3-100 Hz in 1-Hz steps, each with a 1-Hz bandwidth). This
decomposition was performed once and served as a common basis for all subsequent manipulations. In
each manipulation iteration, we selectively modified the signal in the 15-Hz band and then reconstructed
the full signal by summing all band-limited components. Finally, we computed and stored the rhythmicity
profile (LAVI) of the reconstructed signal using the same parameters applied throughout the manuscript
(wavelet width of 5 cycles and a lag of 1.5 cycles).

To simulate “bursts” of varying durations in an otherwise quiet band (Fig. 3H-1), we first attenuated the
signal filtered at 14-16 Hz by multiplying it by 0.5. We then introduced bursts by multiplying segments
of the signal by 2, with a smooth rise and fall. Burst duration was the independent variable, ranging
logarithmically from 2 to 20 cycles, while the inter-burst interval was jittered between 5 and 15 cycles.

To simulate bursts with varying degrees of frequency drift (Fig. S4A-B), we defined each burst as a
sinusoid of the form y = sin(2x f t), where the instantaneous frequency f linearly drifted from 15+drift/2
to 15-drift/2 Hz. The slope of this drift was the dependent variable and ranged logarithmically from 0.1 to
10 Hz.

In the transient input simulations (fig. S4C-F), the initial conditions were identical to the oscillatory burst
duration simulation. Each transient input was simulated as an impulse (one sample long) with amplitude
equal to the EEG range (100 uV). The number of impulses in a “burst” was the independent variable and
ranged linearly from 1 to 13. In the rhythmic condition (fig. S4C-D), the distance between each impulse
in a “burst” was set to 66.6 ms (one cycle of a 15 Hz oscillation). In the arrhythmic condition (fig. S4E-
F), the last impulse in a “burst” was set to 66.6*(n-1) ms after the first pulse, with n the number of impulses
in a “burst”. Then, the remaining n-2 impulses were randomly distributed between the first impulse and
last impulse. Like in the burst duration simulation, the inter “burst” interval jittered between 5 and 15
cycles.

To implement phase shifts (fig. S1), we flipped the sign of the signal by multiplying it by -1 every 2 to 20
cycles (in logarithmic steps). To investigate the effect of power on rhythmicity (fig. SSA-B), we multiplied
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the data filtered at 15 Hz by values ranging between 0.1 and 2, in steps of 0.1. In all simulations, we
defined the significance limits as the maximum and minimum rhythmicity values of the original surrogate
data, and the main dependent variables were the rhythmicity values at the manipulated frequency (15 Hz).
All rhythmicity calculations were made with Wavelet width of 5 cycles and lag of 1.5 cycles.

As can be observed in Fig. 3, fig. S1B, and fig. S5B, increasing (decreasing) the rhythmicity in one band
decreases (increases) rhythmicity in neighbouring bands. To investigate if the troughs in the rhythmicity
profiles we observed in the data of 90 subjects can be explained as an (artefactual) effect of the peak in
alpha, we generated 90 instantiations of 120 s 1/f surrogates. We decomposed the surrogates into discrete
frequencies, and multiplied the amplitude of the signal in 11 Hz (alpha) by a factor randomly chosen
between 1.05 and 2.25. We then calculated the rhythmicity profiles (LAVI) and detected bands (ABBA).
Then, we calculated the fit between the LAVI values at alpha peak and betal trough of the surrogate
population with a linear regression. We used the coefficients of the regression to calculate the expected
betal troughs based on data alpha peaks, and compared them to betal troughs observed in data (fig. S5C-
D). Finally, we compared the LAV values at theta/ alpha and betal troughs of the data to the troughs of
surrogates generated with aperiodic components and power in alpha matching the observed data, using
filter arrays (fig. S5E).

Bursts analysis

To detect oscillatory bursts, we first estimated the power of the raw EEG using Morlet wavelets with a
width of 5 cycles, centred at frequencies spanning logarithmically from 3 to 45 Hz. Artefactual
segments—defined as time points where the EEG exceeded 250 uV or intervals marked as muscle
artefacts during preprocessing—were removed, along with a 500 ms buffer before and after each segment
8, Burst peak time and frequency were identified as local maxima in the two-dimensional time—frequency
plane that exceeded the 90" percentile of power. We then recorded the peak frequency and its
corresponding time point.

To align individual bursts to a common reference point and compute the burst-related potential (BRP; Fig.
3A), we band-pass filtered the raw signal using the band borders defined by the LAVI and ABBA methods
as the filter’s corner frequencies. We then identified the nearest trough in the filtered signal and defined it
as time zero (t = 0), extracting an epoch of £3 cycles around this point. To assess potential inter-band
influences, we also extracted data at the time of each burst while suppressing activity in neighbouring
bands (with notch filters).

Next, we determined the burst onset and offset in two steps. First, we defined the initial burst boundaries
as the time points at which power at the peak frequency dropped below the 75" percentile. Next, we
identified all frequencies that peaked at any time point within this initial window. The final burst onset
and offset were then defined as the time points at which all of these peak frequencies fell below the 75%
percentile of either power (Fig. 3B) or rhythmicity (WTPL, Fig. 3C).

Since we were interested in average durations and rates of bursts in the different bands over the whole
session, we paid special attention to avoiding bursts overlapping in time/frequency. Therefore, if two
bursts overlapped in time, and also had a peak frequencies difference smaller than a quarter of the peak
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frequency of either burst, they were merged into one burst. The merged burst was assigned the frequency
of the burst with the higher energy (estimated as power x duration).

Then, to calculate the burst rate (Fig. 3D), we counted the total number of bursts in each band across the
entire session and divided by the session duration and band width. This latter normalisation accounts for
the fact that the band width increases logarithmically with frequency.

Occupancy (Fig. 3E) was calculated by summing up all time points between the beginning and end of
each burst in each band, dividing by the total number of samples, and multiplying by 100 to obtain
percentages.

Relative power (Fig. 3F) was defined as the dB value (10 x logio) of the ratio between the peak-power
and the 90" power percentile of the peak-frequency.

Finally, band consistency (Fig. 3G) was defined, for each burst, as the number of time-points in which the
peak-frequency was confined within the LAV I-defined frequency band of the burst itself, divided by the
total number of samples in the burst, and multiplied by 100 for percentage representation.

TMS- procedure

All procedures were approved by the Cambridge Psychology Research Ethics Committee. All participants
provided written informed consent prior to data acquisition for the study. Biphasic single and repetitive
TMS pulses were delivered using a DuoMAG XT-100 TMS stimulator and a figure-of-eight coil
DuoMAG 70BF (Brainbox Ltd, Cardiff, UK). During the stimulation, participants sat in a comfortable
recliner chair with a neck rest. To ensure the precise targeting of specific brain regions, the coil was
controlled via Brainsight 2 neuronavigation system (Brainbox) in combination with an Axilum TMS-
Cobot (Axilum Robotics, Schiltigheim, France). The Cobot is a robotic system that actively monitors and
adjusts the positioning of the coil, and compensates for head movements throughout the experiment. To
detect head movements, participants wore a headband reference tracker that was monitored by a Polaris
Vega ST camera (NDI, Waterloo, Canada). The TMS coil was oriented with the handle pointing
posteriorly with respect to the participant’s head, at an angle of 45 degrees relative to midline. The MNI
coordinates for dorso-lateral prefrontal cortex (dIPFC, x = 33, y = 39, z = 26) stimulation were derived
from the peak voxel showing the strongest effect in BOLD signal in a previous meta-analysis study ’°.

Our protocol established a TMS stimulation intensity at 90% of the resting motor threshold (RMT) of each
participant. To determine the RMT, we positioned the coil over the hand area of the right primary motor
cortex and asked the participant to keep their left hand relaxed and at rest. Then, we determined the
minimum intensity at which a single TMS pulse produced a visible twitch in the abductor pollicis brevis
muscle of their left hand, in five of ten successive pulses.

EEG recordings were obtained with the actiCHamp Plus 64 system (Brain Products GmbH, Gilching,
Germany), which is TMS-compatible. The system includes a DC-coupled amplifier avoiding AC recoding
and high-pass filter during the recording period. EEG signals were acquired from 64 active electrodes
arranged on an actiCAP slim electrode cap. The ground electrode was placed at FPz, and the reference at
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Cz. Electrode impedance was maintained below 20 kOhm. We used a sampling rate of 1000 Hz for the
EEG resting-state recording and 5 kHz for the TMS-EEG recordings.

After EEG setup, we used LAVI and ABBA to determine the individual alpha, betal, and beta2 peak
frequencies that would define the repetitive TMS stimulation frequencies. For this, we performed a
resting-state EEG recording of 12 minutes (2-minutes with open eyes, 8-minutes closed eyes, and 2-
minutes open eyes). During the fixation periods, participants were instructed to keep their eyes still and
look at a white fixation cross presented on a black background. LAVI was calculated over the closed-eyes
period.

The TMS-EEG session comprised a total of 480 trials distributed into 8 blocks. There were 7 conditions:
1 single pulse (sp-TMS), 3 rhythmic conditions consisting of a 6-pulses train at alpha, betal or beta2
individual frequencies, and 3 arrhythmic conditions, also consisting of 6-pulses train. For each arrhythmic
condition we precomputed patterns of 6-pulses that excluded frequencies within a +/-2-Hz band centred
on the frequency of the corresponding rhythmic condition, their harmonics, subharmonics and over 50 Hz.
The length of both rhythmic stimuli was equal to 5 cycles of the peak frequency. Each block included 12
trials of the single pulse condition and 8 trials of each of the rhythmic and arrhythmic conditions, presented
sequentially in a pseudorandomized order. During each block, participants were instructed to keep their
eyes still and look at a white fixation cross presented on a black background. The inter-train interval (ITI)
between two consecutive trials was adjusted to the preceding frequency according to safety guidelines .
For frequencies up to 10 Hz, we used a 3-s ITI; for frequencies over 10 Hz and up to 15 Hz, we used a 5-
s ITI; for frequencies over 15 Hz and up to 20 Hz, we used an 8-s ITI; for frequencies over 20 Hz and up
to 25 Hz, we used a 10-s ITI. Stimulus and TMS pulses delivery was controlled using Psychtoolbox-3 &
in Matlab.

TMS- data analysis

EEG data were pre-processed offline in Matlab using Fieldtrip and custom-written code, following
previously published guidelines 8, First, we removed the TMS ringing artefacts by replacing data values
from 1 ms before to 15 ms after the TMS pulse trigger with NaNs (Not-a-Number). Then, we down-
sampled the data to 1000 Hz. Afterwards, we visually inspected the data and marked fragments with major
artefacts (e.g., jumps, movement, muscle); these fragments were also replaced by NaNs. Then, all the
fragments with NaNs were interpolated with a linear method. To detect remaining TMS-related artefacts,
we ran a first independent component analysis (ICA) with the FastICA algorithm. We averaged the
components’ signal 50 ms after TMS pulse over all trials and rejected those components whose amplitude
exceeded 30 pV. Then, we ran a second ICA. In this run, components relating to eye blinks, eye
movements, muscle and sensor-localized noise were identified and removed. All bad data fragments were
replaced via Piecewise Cubic Hermite Interpolation (pchip). Then, the Cz reference channel was recovered
and the data was re-referenced to a common average reference. Finally, the data were cut into segments
of each trial type, including a pre-train onset interval of 2.5 sec and post-train offset interval of 2 sec.

Time-resolved rhythmicity

To measure rhythmicity-based burst-durations (Fig. 3C) and how rhythmicity changes in time within a
trial in response to a visual stimulus (Fig. 7B) or TMS pulses (Fig. 8D and 8F), we used the Within Trial
Phase Lock (WTPL) method. This method is described in detail elsewhere 22, In brief, WTPL measures
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time-resolved rhythmicity by asking how sustained the oscillation is for at least one period. Like LAVI,
WTPL assumes that sustained oscillations are repetitive, and as such, the phase at any time point is
expected to predict future and past phases. Specifically, the phase one cycle before or after a time point
should be near zero, whereas phase slips cause deviations of this phase relation away from zero. In each
frequency of interest, time-point, and trial, we computed the difference between the phase in the time-
point of interest (¢4 o), one cycle beforehand (¢ -1) and one cycle after (¢1).

The WTPL is computed as the mean resultant vector length of the two phase relations:
WTPL(f,t,n) = %lei(%“l’l) + el(®o=¢-1)] Equation 3

where f stands for frequency, t for timepoint, and n for trial. A Matlab implementation for WTPL is
available at https://github.com/laaanchic/WTPL.

Note that since WTPL baseline levels of certain frequencies are higher than others (as learned from LAVI),
between-frequency analysis is done after baseline subtraction (termed AWTPL in Fig. 7 and Fig. 8). We
took the duration -1 s to -0.5 s (relative to the first TMS impulse) as the baseline. Note, that the TMS
frequency used for each participant was dependent on their individual band peak frequency, which varied
across participants. Therefore, in Fig. 8, we plotted the population-averaged AWTPL values after
normalizing individual frequencies (that is, setting the peak frequency per band to “0”).

Amplitude covariance

We used the High-Frequency (HF) activity estimation and separation of electrodes into positively and
negatively responding to the visual stimuli as reported in %. To estimate HF, the entire signal was band-
pass filtered into eight 10 Hz sub-ranges between 70 and 150 Hz. Then, instantaneous amplitude in each
band was extracted using the Hilbert transform. To account for the 1/f profile of the power spectrum, the
amplitude in each sub-range was normalized by dividing the instantaneous amplitude by the mean
amplitude in that range. Finally, the amplitude traces from all sub-bands was averaged. Channels were
defined as responsive if the HF activity in one of four non-overlapping “stimulus-on” windows (0.1-0.3
s,0.3-0.55,0.5-0.7 s, and 0.7-0.9 s relative to stimulus onset) differed significantly from baseline activity
(-0.2-0 s) for at least one of the four categories of visual stimuli used in the study (faces, watches, objects,
and animals). Trials containing excessive noise between -0.3 and 1.6 s relative to stimulus onset, or with
stimulus duration shorter than 900 ms, were excluded from analysis. For each category, the mean HF
signal during the “stimulus-on” window was compared to the mean HF during baseline (two-tailed paired
t-test with Benjamini-Hochberg false discovery rate correction 8 across electrodes and Bonferroni
correction across windows). Hence, electrodes with qFDR < 0.05/4 in at least one of the four windows
were considered responsive. Electrodes were considered “positively responsive” if activity during the
“stimulus-on” window increased relative to baseline, and “negatively responsive” when it decreased.

To estimate the Low-Frequency (LF) activity, we computed the time-frequency representation of the raw
data using complex Morlet wavelets. The wavelets were centred on frequencies spanning logarithmically
from 3 to 45 Hz, with width of 5 cycles each. To extract the amplitude, we took the complex magnitude
(absolute value) of the complex wavelet output. This method was chosen to maintain consistency with the
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LF analysis used throughout the manuscript, including for LAVI computation. In contrast, the HF
estimation followed the approach used in the original publication 2. We then computed for each electrode
and each Low-Frequency the covariance between the LF amplitude and normalised (z-transformed across
time) HF and activities. This normalization was performed to account for differences in HF activity
between electrodes. We calculated the covariance over the whole session (grey trace in Fig. 7C) or in
response to the visual stimulus onset (0-0.2s, purple traces in Fig. 7C).

We computed the time-frequency representation x for each time-point t and frequency of interest f using
complex Morlet wavelets (Equation 1).

Statistical tests

All statistical tests were performed using Matlab with the Statistics and Machine Learning toolboxes. Data
throughout this manuscript are presented as mean + SEM unless otherwise stated. Significance level was
set at o = 0.05. If multiple tests were performed (e.g., different measures in Fig. 3), their p-values were
corrected using the false discovery rate according to the Benjamini-Hochberg algorithm . For post-hoc
tests following ANOVA, we used the Fisher's least significant difference procedure. All statistical tests
are two-sided. Complete details of all statistical tests are presented in Table S1.

To define bands with statistically significant increased or decreased rhythmicity we adopted a bootstrap
approach using a look-up table with o = 0.05 (see above, [Automated Band Border Algorithm (ABBA)]).

To test for differences in band-peak distributions between datasets or areas (Fig. 4), as well as for
differences in burst characteristics between bands (Fig. 3), we used a one-way ANOVA (Matlab function
“anoval”). In figures 3 we excluded participants with > 3 SD, resulting in the exclusion of 1 participant.

To assess whether two or more distributions differed, we computed the likelihood of the data under both
the null and alternative hypotheses using Bayes Factors, which quantify the relative evidence for or against
a difference. We used Bayes Factor (BF) t-tests or ANOVA, using a BF toolbox for Matlab . The output
of the bf.ttest or bf.anova Matlab function is BFio, or how strong is the evidence to support Hy (the
distributions are different) and reject Ho (the distribution are not different). Its counterpart BFo1=1/BF10o
estimated how strong is the evidence to support Ho and reject Hi. To determine the strength of this
evidence we followed the guidelines suggested in 8: 3<BF10<10 indicates a moderate evidence for Hy,
and BF10>10 indicates a strong evidence for Hi. Similarly, 1/10<BF10<1/3 (or 3<BF01<10) indicates a
moderate evidence for Ho, and BF10<1/10 (or BFo1>10) indicates a strong evidence for Ho. Default Cauchy
priors for effect sizes were used (scale parameter = 0.707). No Markov-chain Monte-Carlo sampling was
required, as Bayes factors were calculated analytically.

For comparing LAVI values across frequencies (Figs. 2D and 6C) we adopted a cluster-permutation
approach &8 This non-parametric method is appropriate to control the family-wise error rate since values
of neighbouring frequencies are not independent from each other. We normalized the values of each
subject by subtracting the median across frequencies. Then, we computed the t test at each frequency.
After computing t values, we clustered neighbouring points exceeding a significance level of a = .05 and
summed the t values of each cluster. This sum served as the value for comparison in the cluster-level
statistics. We then created 1000 permutations of data with shuffled labels (i.e., eyes open or closed in Fig.
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2D or medication On or Off in Fig. 6C), and took the t sum of the largest cluster in each permutation. We
considered clusters in the original data as significant if their summed t values were higher than 99.5% or
lower than 0.5% of the shuffled distribution (that is, p<0.01, two-tailed) or higher than 97.5% or lower
than 2.5% (p<0.05), as specified in the main text. Cluster-permutation analysis of amplitude covariation
(Fig. 7C) was calculated using similar parameters, but here the t-test was performed between trial data
(purple traces) and the covariance over the whole session (grey traces). Significant clusters of WTPL in
time and frequency (Figs. 7B, 8D, and 8F) were defined with t-sums computed relative to a baseline before
the visual stimulus or TMS pulses (-1 to -0.5 s), over 1000 repetitions (ECoG) or 64 repetitions (2°,
maximal permutation possible with six TMS subjects).

Data availability

The raw data of each dataset used in this study are available at:
I: https://figshare.com/articles/dataset/EEG during the two-flash task/29519285

1I: https://figshare.com/articles/dataset/EEG at wakeful rest/29519639/1
111 https://figshare.com/articles/dataset/EEG during tactile timing task/29519756/1
IV https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/YD7PPU

V: requests for data should be directed to and will be fulfilled by the corresponding authors of ref. 25,
Mikael Johansson (mikael.johansson@psy.lu.se) and Robin Hellerstedt (robin.hellerstedt@ctb.upm.es).

VI: further information and requests should be directed to and will be fulfilled by the lead contact of ref.
26, Pierre Gagnepain (pierre.gagnepain@inserm.fr).

VII: https://figshare.com/articles/dataset/EEG_at_rest and_with_ TMS/27934962/2
VIII: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/

IX: https://osf.io/4hxpw/

X: http://epi.fizica.unibuc.ro/scalesoldnew/.

XI: https://data.mrc.ox.ac.uk/stn-Ifp-on-off-and-dbs

XII: https://portal.nersc.qgov/project/crcns/download/hc-3

Code availability

A Matlab implementation for LAVI and ABBA (including pink surrogate and look-up table generation)
is available at https://github.com/laaanchic/LAVI.
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